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BCL11A enhancer dissection by Cas9-
mediated in situ saturating mutagenesis
Matthew C. Canver1*, Elenoe C. Smith1*, Falak Sher1*, Luca Pinello2*, Neville E. Sanjana3*, Ophir Shalem3, Diane D. Chen1,
Patrick G. Schupp1, Divya S. Vinjamur1, Sara P. Garcia2, Sidinh Luc1, Ryo Kurita4, Yukio Nakamura4,5, Yuko Fujiwara1,6,
Takahiro Maeda7, Guo-Cheng Yuan2, Feng Zhang31, Stuart H. Orkin1,61 & Daniel E. Bauer11

Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and
gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native
genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic
variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid
BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide
RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals
critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite
enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of
primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal
haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening
approach described here is generally applicable to functional interrogation of non-coding genomic elements.

Enhancers are classically described as distal genetic elements that
positively regulate gene expression in an orientation-independent
manner in ectopic heterologous gain-of-function expression experi-
ments1. These elements coordinate when, where and how genes are
expressed. Enhancer sequences bind transcription factors and are
correlated with specific chromatin features including reduced DNA
methylation, characteristic histone modifications, heightened chro-
matin accessibility, long-range promoter interactions, and bidirec-
tional transcription. Recent chromatin mapping has demonstrated
the abundance of distal regulatory elements bearing an enhancer
signature2–4.

The biological importance of enhancers is underscored by gene
expression studies showing the predictive power of enhancer profile
on lineage-specific programs5–7. Highly marked and clustered enhan-
cers (for example, so-called strong, stretch, or super-enhancers) are
particularly suggestive of cellular identity and may help to infer lin-
eage-specific regulatory factors8–10. Genome-wide association studies
reveal enrichment of trait-associated variants in sequences bearing
lineage-restricted enhancer signatures4,8,11,12. Enhancers display signs
of evolutionary constraint as well as heightened turnover with evid-
ence of positive selection13–16.

Despite their importance, enhancers are typically defined by cri-
teria unrelated to in situ functional requirement. Advances in putative
enhancer mapping, as well as large-scale oligonucleotide synthesis,
facilitate enhancer reporter assays on a massively parallel scale, allow-
ing a systematic evaluation of the functional significance of enhancer
sequences17,18. Nonetheless, ectopic heterologous enhancer assays
cannot address the necessity of an element in its native chromatin

environment. The growing appreciation of the nonrandom distri-
bution of distal elements both with respect to the linear genome
and within the three-dimensional nuclear environment emphasizes
the importance of studying enhancers by perturbing their endogenous
condition10,19.

Insightful observations have been made by mutagenizing enhan-
cers using traditional molecular genetic approaches20,21; however, the
low throughput of these classical methods constrains their widespread
application. Furthermore, the elevated turnover of many enhancer
sequences between species may limit the ability to derive conclusions
from nonhuman organisms regarding human gene regulation.
Advances in genome editing technology make practical the facile
modification of the human genome22,23. High-throughput Cas9-
mediated functional genomics studies have revealed novel genes
required for various biological processes24–27. Genome editing is like-
wise suitable for the study of non-coding genetic elements such as
enhancers, although these experiments have previously been con-
ducted at low throughput28–30.

Human composite enhancer
Recently, we observed that common genetic variants associated with fetal
haemoglobin (HbF; a2c2) level and b-haemoglobin disorder clinical
severity mark an adult-developmental-stage- and erythroid-lineage-spe-
cific intronic enhancer of BCL11A (ref. 28), a validated repressor of HbF
and therapeutic target for b-haemoglobin disorders28,31–33. This compos-
ite human enhancer is composed of three DNase I hypersensitive sites
(DHSs), termed h155, h158 and h162 on the basis of distance in
kilobases (kb) from the transcriptional start site (TSS)28. The most highly
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trait-associated haplotype is defined by two single nucleotide poly-
morphisms (SNPs): rs1427407 within h162 and rs7606173 within
h155 (Extended Data Fig. 1a). Previously, we showed that this enhancer
possessed ectopic erythroid-restricted, adult-stage-specific enhancer
activity28. Moreover, the mouse orthologue of the composite enhan-
cer—defined by primary sequence homology, shared erythroid enhancer
chromatin signature and syntenic position relative to coding sequences—
was shown to be required for BCL11A expression and embryonic globin
gene repression in a mouse erythroid cell line but dispensable in a mouse
B-lymphoid cell line28.

To evaluate the requirement for human BCL11A enhancer
sequences, we used HUDEP-2 cells, an immortalized human CD341

haematopoietic stem and progenitor cell (HSPC)-derived erythroid
precursor cell line that expresses BCL11A and predominantly b- rather
than c-globin34. We used the CRISPR-Cas9 nuclease system to generate
clones of HUDEP-2 cells with deletion of the 12-kb BCL11A composite
enhancer by introduction of a pair of chimaeric single guide RNAs
(sgRNAs). Enhancer deletion resulted in near-complete loss of
BCL11A expression and induction of c-globin and HbF protein to
similar levels as cells with BCL11A knockout (Fig. 1a–c), consistent
with the possibility that these sequences could serve as targets for
therapeutic genome editing for HbF reinduction for the b-haemoglo-
binopathies35. Although targeted deletions by paired double strand
breaks (DSBs) may be achieved by genome editing, competing genomic
outcomes include local insertion/deletion (indel) production at each
cleavage site as well as inversion of the intervening segment22,23,36–38.

Tiled pooled enhancer editing in situ
We hypothesized that composite enhancers may be composed of a
functional hierarchy with essential and dispensable constituent com-
ponents. A functional hierarchy might enable enhancer disruption by
a single DSB at a critical region followed by non-homologous end
joining (NHEJ) repair with indels. In fact, the hypothesis that a pre-
valent mechanism of trait associations is enhancer variation rests on
the premise that single nucleotide changes themselves may substan-
tively modulate enhancer function. Therefore, we reasoned that a
tiling set of sgRNAs could uncover critical enhancer regions by dis-
ruption of nearly all sequences within an enhancer on the basis of the
typical outcome of Cas9 cleavage and NHEJ repair, an indel spectrum
with frequent deletions of up to 10 base pairs (bp) from the cleavage
position22,23,36,38,39.

We designed all possible sgRNAs within the human BCL11A com-
posite enhancer DHSs (Fig. 1d, e) as restricted only by the presence of
the Streptococcus pyogenes Cas9 (SpCas9) NGG protospacer adjacent
motif (PAM) sequence, which restricts cleavage at an average 1/8
frequency at each genomic position22,39. The NGG-PAM-restricted
sgRNAs had a median gap between adjacent genomic cleavages of
4 bp and 90th percentile of 18 bp (Fig. 1f), which suggested that this
strategy could approach saturation mutagenesis in situ. We included
non-targeting sgRNAs as negative controls as well as sgRNAs tiling
exon 2 of BCL11A as positive controls (Fig. 1e). The library was
successfully cloned to a lentiviral vector. The basic experimental
schema was to transduce HUDEP-2 cells with the lentiviral library
at low multiplicity such that nearly all selected cells contained a single
integrant (Fig. 1d). After expansion, differentiation, sorting by HbF
level, genomic DNA isolation and deep sequencing of integrated
sgRNAs, an HbF enrichment score was calculated for each sgRNA
by comparing its representation in HbF-high and HbF-low pools (see
Supplementary Information and Extended Data Fig. 2 for additional
technical details).

We mapped the HbF enrichment score of each sgRNA to its pre-
dicted position of genomic cleavage (Fig. 2a). Most enhancer targeting
sgRNAs showed no significant enrichment or depletion from the
HbF-high pool. The enriching sgRNAs co-localized to discrete
genomic positions. For example, we observed a cluster of sgRNAs
at h162 with modest enrichment, a cluster at h155 with moderate

enrichment (as well as adjacent clusters with depletion), and a cluster
at h158 with marked enrichment. Of note, we observed ten sgRNAs
at h158 with cleavage positions within 42 bp each with HbF enrich-
ment scores exceeding 0.99, the median enrichment score of BCL11A
exon-2-targeting sgRNAs.

Exon-2-targeted sgRNAs showed a linear correlation between HbF
enrichment and cellular dropout, suggesting that sgRNAs that result
in complete knockout of BCL11A lead to a reduced rate of cell accu-
mulation inseparable from HbF derepression (Fig. 2b). In contrast,
the sgRNAs at h158 associated with marked HbF enrichment showed
blunted impact on dropout (Fig. 2b). This finding could be consistent
with a low residual level of BCL11A adequate to promote cellular
accumulation but inadequate to suppress HbF.

To corroborate these findings, we introduced two sgRNAs to the
HUDEP-2/Cas9 cells to produce targeted deletion or inversion
clones36. Deletion of h158 phenocopied deletion of the composite
enhancer and deletion of h155 had moderate effect (while deletion of
h162 showed a non-significant trend towards a modest effect), consist-
ent with the magnitude of top-scoring and co-localizing sgRNAs from
the screen (Fig. 2a, c–e). Inversion of the h158 or h155 sites had no
significant effect on gene expression, demonstrating that the BCL11A
enhancer functions in an orientation-independent manner in situ, con-
sistent with the classic enhancer definition1 (Fig. 2c–e).
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Figure 1 | Tiled pooled in situ CRISPR-Cas9 BCL11A enhancer screen.
a–c, Deletion of the human composite BCL11A enhancer in HUDEP-2 cells
demonstrates its necessity for BCL11A expression (normalized to GAPDH),
repression of c-globin mRNA, and repression of HbF; control clones,
n 5 4; BCL11A null, n 5 1; enhancer deleted, n 5 3; error bars show s.e.m.
d, Workflow of CRISPR-Cas9 enhancer screen showing library synthesis,
delivery and analysis. e, Human NGG PAM sgRNA library distribution. f, Gaps
between adjacent genomic cleavages for NGG PAM sgRNAs targeting BCL11A
exon 2, h155, h158 and h162.
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To validate the findings from the HUDEP-2 cells, the top-scoring
enhancer-targeting sgRNA from the screen (number 1621 at h158)
was tested in primary human erythroblasts by lentiviral transduction
of human CD341 HSPCs exposed to ex vivo erythroid culture con-
ditions. Consistent with the screen results, sgRNA-1621 resulted in
downregulation of BCL11A expression and corresponding upregula-
tion of c-globin expression and increase in HbF1 cells (Fig. 2f–h).
Notably, sgRNA-1621 did not alter surface marker profile, enuc-
leation frequency, or cellular morphology (Extended Data Fig. 3c).
Together, these results suggest proof-of-principle of an individual
sgRNA targeting a non-coding element for therapeutic genome edit-
ing of b-haemoglobin disorders.

Primate-specific enhancer sequences
We applied a hidden Markov model (HMM) to the sgRNA enrich-
ment score data to infer functionally important sequences within each

DHS (Extended Data Fig. 4a). This model defined three functional
states—active, repressive and neutral—based on likelihood to encom-
pass sequences that positively, negatively and neutrally regulate target
gene expression, respectively. The model identified functional states
within each DHS (Fig. 3a–c). At each of the three DHSs, the active
states were precisely located at regions with the highest degree of
DNase I sensitivity.

The overall sequence conservation at the h158 active region appears
both less intense and less distinct from flanking sequences as compared
to those of h162 and h155 (Fig. 3a–c). The top-scoring sgRNAs in the
screen co-localize to 42 bp within h158 (Fig. 4 and Extended Data
Fig. 5b). The third-highest-scoring enhancer-targeted sgRNA (sgRNA-
1617) mapped directly onto an apparent GATA1 motif, although below a
genome-scale significance threshold (P 5 3.74 3 1024). The mouse
orthologous sequence has a GATA1 motif P value only modestly higher
than has the human (P 5 4.333 1024). This GATA1 motif appears to
have relatively high vertebrate conservation, with exact human sequence
identity in rabbits, pigs, dogs and elephants. The top-scoring sgRNA
(sgRNA-1621) mapped to a position 15 bp from this GATA1 motif
(Fig. 4). An additional four sgRNAs mapping between sgRNA-1621
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Figure 2 | Functional mapping of the BCL11A enhancer. a, Mapping sgRNA
HbF enrichment scores relative to genomic cleavage positions. Non-targeting
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ized to GAPDH (c), b-like globin expression (d), and HbF1 fraction (e) in
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deleted, n 5 5; 155 inverted, n 5 3; 158 inverted, n 5 2. f–h, BCL11A expres-
sion normalized to GAPDH (f), b-like globin expression (g), and HbF1 fraction
(h) in primary human erythroid precursors transduced with Cas9 and individual
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and sgRNA-1617 each had substantially elevated HbF enrichment
scores. Underlying these sgRNAs were additional predicted motifs (that
is, RXRA, EHF, ELF1 and STAT1). Although these sequences showed a
high level of conservation among primates, they showed high degeneracy
among nonprimate vertebrates (Fig. 4).

We tested the pattern of mutations observed upon treatment of
cells with either sgRNA-1621 or sgRNA-1617 by deep sequencing.
Each of these sgRNAs is sufficient to substantially induce HbF in
human erythroid cells (Fig. 2h and Extended Data Fig. 3a, b). We
sorted cells exposed to Cas9 and these sgRNAs into HbF-high and
HbF-low pools. We determined the indel spectrum in each popu-
lation by deep sequencing (Extended Data Fig. 4b). As expected, we
observed indels clustering around the predicted cleavage positions. By
comparing the per nucleotide indel ratio between cells from the HbF-
high and HbF-low pools, we calculated a relative indel enrichment
across the sequencing amplicon. Notably, both sgRNAs yielded max-
imal HbF indel enrichment not precisely at the expected cleavage
position but offset at shared intervening sequences (Fig. 4). These
sites of maximal HbF mutation enrichment mapped to 7 bp directly
overlapping predicted motifs (Fig. 4). Taken together, these data sug-
gest that a conserved GATA1 motif scoring below the prediction
threshold adjacent to primate-specific sequences form the core of
an enhancer essential for human erythroid BCL11A expression and
HbF repression.

Mouse enhancer dissection
To test functional conservation of the BCL11A enhancer, we exam-
ined the orthologous mouse Bcl11a enhancer in greater detail.
Erythroid DNase I sensitivity is observed at those sequences homo-
logous to h155 and h162 but not h158 (Extended Data Fig. 6a),
consistent with the reduced sequence homology within the h158
active region (Fig. 3a–c). We performed a pooled CRISPR enhancer
saturating mutagenesis screen in MEL ey:mCherry reporter cells,
similar to the human screen described above (Extended Data Figs 6
and 7, and Supplementary Information).

Upon mapping the sgRNA cleavage positions to the genome, we
again observed that the majority of enhancer-targeting sgRNAs
demonstrated no significant ey enrichment or depletion. We observed
co-localization of sets of sgRNAs with ey enrichment (Fig. 5a). There
was a similar complex pattern at the m155 orthologue as at h155,
with adjacent regions with enriching and depleting sgRNAs from the
high-ey:mCherry pool at the DHS core. At the m158 orthologue we

did not observe any evidence of ey enriching or depleting sgRNAs. At
the m162 orthologue there was a marked peak, with five sgRNAs
with ey enrichment scores exceeding 1.30, the median enrichment
score of Bcl11a exon-2-targeting sgRNAs (Fig. 5a). This potent impact
of the m162 orthologue was in contrast to the modest impact of
individual sgRNAs or DHS deletion at h162.

We used pairs of sgRNAs in the presence of Cas9 to produce
MEL clones with deletions of various substituent elements at the
Bcl11a enhancer (Fig. 5b). Deletion of the DNase-insensitive m158
orthologue had no apparent effect on Bcl11a expression, consistent
with the pooled screen result. Deletion of the m155 orthologue led to
an approximately twofold reduction in Bcl11a expression (mean

1621

Chr2:
--->

50 bp60,722,350

Klf1

Klf1

RREB1

Rxra

ELF1

1617
1621

EHF
STAT1

144 bp murine insertion

2

DHS +58 HMM

Gaps
Human
Chimp
Gorilla

Rhesus
Baboon

Marmoset
Bushbaby

Chinese tree shrew
Squirrel
Mouse

Pig

Rat
Naked mole-rat

Rabbit

Cow
Dog

Elephant
Opossum

Chicken
Zebrafish

Primate

Nonprimate

Motifs

PhyloP

PhastCons

1617

HbF enrichment

HbF indel enrichment

Min Max

0

Figure 4 | Primate-specific BCL11A enhancer
functional core. DHS h158 functional core
defined by maximal HbF enrichment score and
active HMM state. HbF enrichment scores are
shown by grey lines and circles. HbF indel
enrichment per nucleotide is based on amplicon
genomic sequencing of sorted cells exposed to
either sgRNA-1617 or -1621. No common SNPs
(minor allele frequency .1%) are present at this
region. JASPAR motifs (P , 1024) are depicted
in black with selected motifs annotated by
transcription factor based on known erythroid-
specific function or genomic position. Gata1 motif
LOGO at sgRNA-1617 cleavage position as
described in text. Orthologous sequences are listed
from representative primates and nonprimates
of distributed phylogeny. PhyloP (scale from
24.5 to 4.88) and PhastCons (from 0 to 1)
estimates of evolutionary conservation among
100 vertebrates are shown.

c

0

20

40

60

80

100

H
u

m
a
n

 β
-l

ik
e
 g

lo
b

in
 (
%

) 

12.5
14.5

16.5
18.5

εγβ

Embryonic day

12.5
14.5

16.5
18.5

12.5
14.5

16.5
18.5

DHS +62 +/+ DHS +62 +/Δ DHS +62 Δ/Δ

a

7 8 51 52 54 55 58 59

Relative distance to TSS (kb)

E
n

ri
c
h

m
e
n

t 
(l
o

g
2
)

–2

0

2

4

Exon 2Non-targeting DHS +55 DHS +58 DHS +62

b

0.01

0.1

1

10

B
cl

11
a 

e
x
p

re
s
s
io

n

MEL

Enh
an

ce
r d

el
et

ed

D
H
S +

55
 d

el
et

ed

D
H
S +

58
 d

el
et

ed

D
H
S +

62
 d

el
et

ed

D
H
S +

62
 in

ve
rte

d

Figure 5 | Functional sequence requirement at the mouse Bcl11a erythroid
enhancer for in vivo haemoglobin switching. a, Mapping sgRNA ey
enrichment scores to genomic cleavage positions. Non-targeting sgRNAs were
pseudo-mapped with 5 bp spacing. b, Bcl11a expression in mouse erythroid
clones with deletion or inversion of individual DHSs relative to non-deleted
controls. c, Transgenic humanb-like globin expression inb-YAC/162 deletion
mice. For 1/1, 1/D and D/D: at E12.5, n 5 5, 11 and 3 embryos, respectively;
at E14.5, n 5 2, 3 and 4; at E16.5, n 5 2, 4 and 1; at E18.5, n 5 3, 1 and 3.
Error bars represent s.e.m.

1 2 N O V E M B E R 2 0 1 5 | V O L 5 2 7 | N A T U R E | 1 9 5

ARTICLE RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved



residual level 49%, P , 0.0001), whereas deletion of the m162 ortho-
logue approached deletion of the entire composite enhancer in
terms of reduction in Bcl11a expression (mean residual levels of 8%
(P , 0.0001) and 6% (P , 0.0001), respectively, Fig. 5b; also see
Supplementary Information and Extended Data Figs 8 and 9). In
addition, clones in which the m162 orthologue was inverted showed
no change in Bcl11a expression, suggesting that the mouse enhancer,
like the human enhancer, functions independently of orientation in
situ (Figs 2c–e and 5b).

Erythroid-restricted function in vivo
To substantiate the importance of the m162 orthologue for Bcl11a
expression and to validate BCL11A enhancer disruption as a thera-
peutic strategy, we generated mice deficient for the Bcl11a m162
orthologue. We used the same Cas9 and paired sgRNA deletion strat-
egy in mouse embryonic stem cells, from which we derived mice with
germline transmission of the enhancer deletion. Previous studies have
demonstrated essential roles for Bcl11a in structural development of
the central nervous system and B lymphopoiesis40–42. Notably, unlike
conventional Bcl11a knockouts, which die hours after birth, m162
orthologue deletion mice were born healthy at expected Mendelian
ratios (Extended Data Fig. 10a). The m162 orthologue deletion mice
also showed normal frequencies of B-cell progenitors in the fetal liver
and mature B lymphocytes in the adult peripheral blood (Extended
Data Fig. 10b, c). Other haematopoietic lineages were also observed at
wild-type frequencies (Extended Data Fig. 10c). Bcl11a expression
was unperturbed in the brain or sorted B cell precursors from embry-
onic day 16.5 (E16.5) embryos (Extended Data Fig. 10d). In contrast,
there was substantial reduction in Bcl11a levels in sorted E16.5 eryth-
roid precursors (26% residual, P , 0.05; Extended Data Fig. 10d).

The m162 orthologue deletion mice were bred to mice transgenic
for the human b-globin cluster (b-YAC) to model the role of BCL11A
in haemoglobin switching43. Unlike its fetal-stage expression in
humans, in the mouse fetal liver transgenic human c-globin is subject
to intense repression (like an embryonic globin). Bcl11a is required for
this early murine silencing of transgenic c-globin at E14.5, although
even in the absence of Bcl11a, c-globin is ultimately repressed32,33.
Fetal livers were evaluated between days E12.5 and E18.5 to monitor
haemoglobin switching. Repression of human c-globin and activation
of human b-globin was markedly delayed in the m162 orthologue
deleted mice (Fig. 5c). Heterozygous mice showed an intermediate
c-globin derepression phenotype, underscoring the dose-dependent
inverse relationship between BCL11A and HbF level. These results
indicate that targeting the erythroid enhancer of Bcl11a in vivo results
in erythroid-specific disruption of Bcl11a expression and relaxed
repression of c-globin, unaccompanied by the obvious neurological
and immunological toxicities seen in the Bcl11a conventional knock-
out context.

Discussion
We employed a novel application of CRISPR-Cas9 genome editing,
saturating mutagenesis of non-coding elements in situ, to provide an
important insight into the organization and function of the BCL11A
erythroid enhancer. Traditional tests of enhancer function rely on
ectopic heterologous reporter assays and/or correlative biochemical
features. Genome editing allows facile evaluation of the requirement
of enhancer sequences within their endogenous chromatin context
for appropriate gene regulation. As shown here, high-resolution,
high-throughput pooled tiling sgRNA screening reveals underlying
enhancer sequence requirements approaching nucleotide resolution.
A limitation to the resolution of this approach is the availability of
NGG PAM sequences in a given region. We did not observe efficient
editing by SpCas9 with NAG-restricted sgRNAs (Extended Data
Figs 2h and 6j). Recent studies have identified Cas9 orthologues
and variants restricted by alternative PAM sequences, each capable
of efficient genome editing44–46. This increased targeting range of Cas9

could allow increased resolution for in situ mutagenesis, particularly at
sequences with paucity of NGG motifs. Alternatively, approaches reli-
ant on homology-directed repair47 could offer nucleotide-resolution
functional mutagenesis of non-coding sequences, although issues of
efficiency, fidelity and quantitative sensitivity would need to be con-
sidered. We suggest that our tiled pooled CRISPR screening approach
could be readily adapted to the functional interrogation of numerous
non-coding genomic elements.

In addition, these data demonstrate that apparent sequence
conservation at the BCL11A enhancer masks underlying functional
divergence. The mouse and human BCL11A erythroid composite
enhancers share primary sequence homology, an erythroid enhancer
chromatin signature, and syntenic intronic position relative to coding
sequences. Moreover, both are required for erythroid expression of
BCL11A and repression of embryonic/fetal globin genes. However,
our high-resolution CRISPR mutagenesis analysis reveals divergence
in the architecture of these enhancers. Of note, human BCL11A
enforces the c- to b-globin developmental switch around the time
of birth. The timing and nature of these switches and the globin genes
themselves are distinct in primates as compared to nonprimate verte-
brates that only exhibit a mid-gestation embryonic to adult switch48.
Therefore, it would seem plausible that critical regulatory mechan-
isms at BCL11A might differ between species (also see Supplementary
Information).

The haemoglobin disorders are among the most common
Mendelian inherited human conditions. The level of HbF is a key
modifier of clinical severity of these diseases and BCL11A is the chief
regulator of HbF level48. Naturally occurring genetic variation at the
BCL11A enhancer is well-tolerated and associated with HbF level and
b-haemoglobin disorder clinical severity. The work presented here
offers a framework for therapeutic genome editing of the BCL11A
enhancer for b-haemoglobin disorders. Enhancer disruption by indi-
vidual sgRNAs in primary erythroid precursors results in substantial
HbF induction. This approach may mitigate erythroid-specific
growth disadvantages of complete BCL11A loss (Fig. 2b). Further-
more, erythroid enhancer disruption may spare BCL11A expression
and function in non-erythroid contexts, such as B lymphopoiesis
(Extended Data Fig. 10b–d). A challenge for the field is that it is not
yet possible to accurately model HbF repression experimentally.
However, individuals haploinsufficient for BCL11A due to microde-
letions exhibit marked neurological deficits, and elevated HbF
beyond that seen in homozygotes for high-HbF common enhancer
haplotypes49,50. Taken together, these data suggest that perturbation of
critical sequences within the BCL11A enhancer defined here may
result in HbF levels exceeding a clinical threshold required to ameli-
orate the b-haemoglobin disorders.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size.
Generation of genomic deletions in HUDEP-2 cells. HUDEP clone 2 (HUDEP-2)
was used as previously described34. HUDEP-2 cells were expanded in StemSpan
SFEM (Stem Cell Technologies) supplemented with 1026 M dexamethasone
(Sigma), 100 ng ml21 human stem cell factor (SCF) (R&D), 3 international units
(IU) ml21 erythropoietin (Amgen), 1% L-glutamine (Life Technologies), and 2%
penicillin/streptomycin. 1mg ml21 doxycycline (Sigma) was included in the cul-
ture to induce expression of the human papilloma virus type 16 E6/E7 genes34.
HUDEP-2 cells were differentiated in Iscove’s Modified Dulbecco’s Medium
(IMDM) (Life Technologies) supplemented with 330mg ml21 holo-transferrin
(Sigma), 10 mg ml21 recombinant human insulin (Sigma), 2 IU ml21 heparin
(Sigma), 5% human solvent detergent pooled plasma AB (Rhode Island Blood
Center), 3 IU ml21 erythropoietin, 100 ng ml21 human SCF, 1mg ml21 doxycy-
cline, 1% L-glutamine, and 2% penicillin/streptomycin.

Tandem sgRNA lentiviruses were transduced into HUDEP-2 with stable Cas9
expression (Supplementary Table 1). Bulk cultures were incubated for 7–10 days
with 10 mg ml21 blasticidin and 1mg ml21 puromycin selection to allow for edit-
ing. Then bulk cultures were plated clonally at limiting dilution. 96 well plates
with greater than 30 clones per plate were excluded to avoid mixed clones. After
approximately 14 days of clonal expansion, genomic DNA was extracted using
50 ml QuickExtract DNA Extraction Solution per well (Epicentre). Clones were
screened for deletion by conventional PCR with one PCR reaction internal to
segment to be deleted (non-deletion band) and one gap-PCR reaction across the
deletion junction (deletion band) that would only amplify in the presence of
deletion36. Biallelic deletion clones were identified as the absence of the non-
deletion PCR band and the presence of the deletion PCR band (Supplementary
Table 2). Inversion clones were identified as previously described by PCR36

(Supplementary Table 3). Briefly, inversion clones had one inverted allele and
one deleted allele without the presence of non-deletion alleles. In our experience
biallelic inversion clones are very rare events36. PCR was performed using the
Qiagen HotStarTaq 23 master mix and the following cycling conditions: 95 uC
for 15 min; 35 cycles of 95 uC for 15 s, 60 uC for 1 min, 72 uC for 1 min; 72 uC for
10 min. Alternatively, PCR was also performed using 23 Accuprime Supermix II
(Life Technologies) with the following cycling conditions: 94 uC for 2 min; 35
cycles of 94 uC for 20 s, 60 uC for 20 s, 68 uC for 1 min kb21 of PCR product; 68 uC
for 5 min. RNA was extracted from each positive clone using a kit (Qiagen) and
quantitative real-time RT-qPCR was performed using iQ SYBR Green Supermix
(Bio-Rad). Primers used are found in Supplementary Table 5. Gene expression
was normalized to that of GAPDH. We isolated four control, one BCL11A null,
three composite enhancer deleted, one h155 deleted, one h158 deleted, five
h162 deleted, three h155 inverted, and two h158 inverted clones. The
BCL11A null clone had a 216 bp interstitial deletion of exon 2, preventing binding
of the RT–qPCR primers. All gene expression data reported from these clones
represents the mean of at least three technical replicates.
Design and synthesis of human and mouse lentiviral sgRNA libraries. Every
20-mer sequence upstream of an NGG or NAG PAM sequence on the plus or
minus strand was identified for both the human and mouse orthologous 155,
158 and 162 DHS as well as BCL11A/Bcl11a exon 2 (Fig. 1 and Extended Data
Figs 2, 6). Relative to the human hg19 reference genome, a reference was used
with the following substitutions to approximate a common low-HbF-associated
haplotype: rs1427407-G, rs1896293-T, rs6706648-T, rs6738440-G, rs7606173-C.
The mouse orthologous sequences to each of the human DHSs were defined by
using the liftOver tool of UCSC Genome Browser as previously described28. Each
of the sgRNA oligos were synthesized as previously described25,51,52 and cloned
using a Gibson Assembly master mix (New England Biolabs) into lentiGuide-
Puro (Addgene plasmid ID 52963) which had been BsmBI digested, gel purified,
and dephosphorylated. Gibson Assembly products were transformed to electro-
competent cells (E. cloni, Lucigen). Sufficient colonies were isolated to ensure
,903 library coverage for both human and mouse libraries. Plasmid libraries
were deep sequenced to 5333 and 8133 coverage for human and mouse libraries,
respectively, to confirm representation.

To produce lentivirus, HEK293T cells were cultured with Dulbecco’s Modified
Eagle’s Medium (DMEM) (Life Technologies) supplemented with 10% fetal
bovine serum (FBS) (Omega Scientific) and 2% penicillin-streptomycin (Life
Technologies) in 15 cm tissue culture treated Petri dishes. HEK293T cells were
transfected at 80% confluence in 12 ml of media with 13.3mg psPAX2, 6.7mg
VSV-G, and 20 mg of the lentiviral construct plasmid of interest using 180mg of
linear polyethylenimine (Polysciences). Medium was changed 16–24 h after
transfection. Lentiviral supernatant was collected at 48 and 72 h post-transfection
and subsequently concentrated by ultracentrifugation (24,000 rpm for 2 h at 4 uC
with Beckman Coulter SW 32 Ti rotor).

Tiled pooled CRISPR-Cas9 screen for in situ functional mapping the human
BCL11A erythroid enhancer. HUDEP-2 cells with stable Cas9 expression were
transduced at low multiplicity with the human sgRNA library lentivirus pool
while in expansion medium. Control transductions were performed to ensure
transduction rate did not exceed 50%. Cell numbers were maintained throughout
the experiment at levels adequate to exceed 1,0003 representation of the library.
10 mg ml21 blasticidin (Sigma) and 1 mg ml21 puromycin (Sigma) were added
24 h after transduction to select for lentiviral library integrants in cells with
Cas9. Cells were cultured in expansion media for one week followed by differ-
entiation media for an additional week.

Intracellular staining was performed by fixing cells with 0.05% glutaraldehyde
(grade II) (Sigma) for 10 min at room temperature. Cells were centrifuged for
5 min at 600g and then resuspended in 0.1% Triton X-100 (Life Technologies) for
5 min at room temperature for permeabilization. Triton X-100 was diluted with
phosphate buffered saline (PBS) with 0.1% BSA and then centrifuged at 600g for
15 min. Cells were stained with anti-human antibodies for HbF (clone HbF-1
with FITC or APC conjugation; Life Technologies) and b-haemoglobin antibody
(clone 37-8 with PerCP-Cy5 or PE conjugation; Santa Cruz) for 20 min in the
dark. Cells were washed to remove unbound antibody before FACS analysis.
0.2mg HbF and 2mg of adult haemoglobin (HbA) (b-haemoglobin) antibodies
were used per 5 million cells. Control cells exposed to a non-targeting sgRNA
sample and BCL11A exon 2 were used as negative and positive controls, respect-
ively, to establish flow cytometry conditions. Populations of cells with the top and
bottom 10% of expression of HbF were sorted by FACS.

After sorting the HbF-high and HbF-low pools, library preparation and deep
sequencing was performed as previously described25. Briefly, genomic DNA was
extracted using the Qiagen Blood and Tissue kit. Herculase PCR reaction
(Agilent) using lentiGuide-Puro specific primers (59-AATGGACTATCATA
TGCTTACCGTAACTTGAAAGTATTTCG-39 and 59-CTTTAGTTTGTAT
GTCTGTTGCTATTATGTCTACTATTCTTTCCC-39) including a handle
sequence was performed as follows: Herculase II reaction buffer (13), forward
and reverse primers (0.5mM each), dimethyl sulfoxide (DMSO) (8%), deoxynu-
cleotide triphosphates (dNTPs) (0.25 mM each), Herculase II Fusion DNA
Polymerase (0.5 reactions) using the following cycling conditions: 95 uC for
2 min; 20 cycles of 95 uC for 15 s, 60 uC for 20 s, 72 uC for 30 s; 72 uC for 5 min.
Multiple reactions of no more than 200 ng each were used to amplify from 6.6mg
gDNA (,13106 cell genomes) per pool. Samples were subjected to a second PCR
using handle-specific primers25 to add adaptors and indexes to each sample using
the following conditions: Herculase II reaction buffer (13), forward and reverse
primers (0.5 mM each), dNTPs (0.25 mM each), Herculase II Fusion DNA
Polymerase (0.5 reactions) with the following cycling conditions: 95 uC for
2 min; 25 cycles of 95 uC for 15 s, 60 uC for 20 s, 72 uC for 30 s; 72 uC for 5 min.
PCR products were run on an agarose gel and the band of expected size was gel
purified. Illumina MiSeq 150 bp paired end sequencing was performed.

sgRNA sequences present in the plasmid pool as well as in the HbF-high and
HbF-low pools were enumerated. Guide sequences were mapped to the guides
comprising the sgRNA library without allowing mismatches. Total reads were
normalized to library sequencing depth. Cellular dropout score was determined
by calculating (1) the ratio of normalized reads in the cells at end of experiment
(average of reads in the HbF-high and HbF-low pools) to reads in the plasmid
pool; (2) log2 transformation; and (3) median of biological replicates. HbF enrich-
ment score was determined by calculating (1) the ratio of normalized reads in the
HbF-high compared to reads in the HbF-low pools; (2) log2 transformation; and
(3) median of biological replicates. After exclusion of sgRNAs with dropout
scores ,223 and NAG PAM sgRNAs, a quantile–quantile plot was made with
a line fitted through the first and third quantiles using R software. HbF enrich-
ment scores and cellular dropout scores were compared by Spearman rank cor-
relation. sgRNA sequences were mapped to the human genome (hg19) with
cleavage positions set to between positions 17 and 18 given PAM positions
21–23. For visual comparisons to targeting sgRNAs, non-targeting sgRNAs were
pseudomapped each separated by 5 bp.
Validation in primary human CD341 HSPCs. Primary human CD341 HSPCs
from G-CSF mobilized healthy adult donors were obtained from the Center of
Excellence in Molecular Hematology at the Fred Hutchinson Cancer Research
Center, Seattle, Washington. CD341 HSPCs were subject to erythroid differenti-
ation liquid culture as previously described53. Briefly, HSPCs were thawed on day
0 into erythroid differentiation medium (EDM) consisting of IMDM supplemen-
ted with 330mg ml21 holo-human transferrin, 10mg ml21 recombinant human
insulin, 2 IU ml21 heparin, 5% human solvent detergent pooled plasma AB,
3 IU ml21 erythropoietin, 1% L-glutamine, and 2% penicillin/streptomycin.
During days 0–7 of culture, EDM was further supplemented with 1026 M hydro-
cortisone (Sigma), 100 ng ml21 human SCF, and 5 ng ml21 human IL-3 (R&D).
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During days 7–11 of culture, EDM was supplemented with 100 ng ml21 human
SCF only. During days 11–18 of culture, EDM had no additional supplements.

HSPCs were transduced with lentiCas9-Blast (Addgene plasmid ID 52962)
24 h after thawing in the presence of 10 mM 16,16-dimethylprostaglandin E2
(PGE2; Cayman Chemical). At 48 h after thawing, medium was changed and
cells were transduced with lentiGuide-Puro or lentiGuide-Crimson cloned with
relevant sgRNA sequence in the presence of 10mM PGE2. Three independent
transductions were performed per sgRNA. At 72 h after thawing, medium was
changed and HSPCs were selected with 10mg ml21 blasticidin and 1 mg ml21

puromycin or 10 mg ml21 blasticidin followed by sorting for lentiGuide-
Crimson1 cells on day 16 of culture. Blasticidin and/or puromycin selection
occurred from days 3 to 8 of culture.

Differentiation was assessed on day 18 of culture using anti-human antibodies
against the transferrin receptor (CD71) (Clone OKT9 with FITC conjugation;
eBioscience) and glycophorin A (CD235a) (Clone HIR2 with PE conjugation;
eBioscience). Enucleation was assessed using 2 mg ml21 of the cell-permeable
DNA dye Hoescht 33342 (Life Technologies). CD235a1Hoescht 333422 cells
were determined to be enucleated erythroid cells. Cells were intracellularly
stained for HbF and HbA on day 18 of culture as described above. 50,000–
100,000 cells were centrifuged onto microscope slides at 350 rpm for 4 min.
Slides were stained with Harleco May–Grünwald stain (Millipore) for 2 min,
Giemsa stain (Sigma) for 12 min, and two water washes for 30 s each. Slides were
air dried and then coverslipped using Fisher Chemical Permount Mounting
Medium (Fisher). RNA isolation and RT–qPCR was performed as above. Gene
expression was normalized to that of GAPDH. All gene expression data represent
the mean of at least three technical replicates.

PCR primers were designed to amplify the genomic cleavage site for a given
sgRNA. Resulting PCR products were subjected to Sanger sequencing. Sequencing
traces were used for editing quantification using a previously described publically
available tool54.
Computational analysis. Human erythroid H3K27ac ChIP-seq was obtained
from Xu et al.7 and mouse erythroid H3K27ac ChIP-seq was obtained from
Kowalczyk et al.55 and Dogan et al.56. We uniformly processed all the data sets
using the same pipeline with the same criteria to call super-enhancers. Specifically,
we started from raw reads and realigned each data set with Bowtie2 with the default
parameters. We then removed duplicate reads with the Picard Suite. To call the
peaks we used MACS2 in the narrow mode. Finally, to call the super-enhancers we
used the ROSE algorithm with the default parameters10. Using these settings, peaks
closer than 12.5 kb are stitched together and then ranked based on the H3K27ac
intensity. To assign super-enhancers to genes we used again ROSE with default
settings. In particular, the tool reports three categories of genes for each super-
enhancer: (1) overlapping genes (genes for which the gene body region overlaps a
super-enhancer); (2) proximal genes (genes close to a super-enhancer considering a
window of 50 kb); (3) closest gene (closest gene considering its TSS and the centre of
the super-enhancer). To generate a Venn diagram of genes for super-enhancer data
sets, we used the union of these three gene categories.

HMM segmentation was performed to automatically segment the enrichment
score signals into enhancer regions with active, repressive and neutral effect. We
designed a HMM with 3 states using the GHMM package (http://ghmm.source-
forge.net/). To learn the HMM parameters we used the Baum–Welch algorithm.
To find the best segmentation for each region we used the Viterbi algorithm. The
emission probability for each state was modelled as a Gaussian distribution and
all the possible transitions between states were allowed as shown in Extended
Data Fig. 4a. Since the signal was not obtained with a constant genomic resolu-
tion, we interpolated and smoothed the signal using a Gaussian kernel over 12 bp
and applied the HMM to the smoothed signal. To set the initial parameters, we
used the 1%, 50% and 99% percentile of the smoothed signal for the prior of the
means of the repressive, neutral and active states, respectively, while the prior for
the standard deviation was set to 0.001 for all the three states.

Motif analysis was performed to evaluate the human and mouse enhancer
regions for potential binding sites for known transcription factors. We used the
FIMO software57 with a P-value threshold of ,1024. For each region we extracted
sequences using the hg19 and mm9 assemblies respectively for human and
mouse. The motif database was the latest version of the JASPAR database58.

Deep sequencing paired-end reads of genomic amplicons from genome editing
target sites were first filtered for reads with PHRED quality score ,30, merged
with the FLASH (Fast Length Adjustment of SHort reads) software, and subse-
quently aligned to a reference amplicon using the needle aligner from the
EMBOSS suite (http://emboss.sourceforge.net/) to quantify insertions and dele-
tions. Per nucleotide frequency of deletion of a position, insertion directly adja-
cent to the position, or no mutation at the position was quantitated using
CRISPResso (https://github.com/lucapinello/CRISPResso).

Pooled CRISPR-Cas9 screen for high-resolution functional mapping of
mouse Bcl11a enhancer. Murine erythroleukaemia (MEL, MEL-745A cl.
DS19) cells were cultured in DMEM supplemented with 10% FBS, 1%
L-glutamine, and 2% penicillin/streptomycin as previously described28,36. Cell
lines tested negative for mycoplasma contamination. ey:mCherry reporter MEL
cells with stable Cas9 expression were transduced at low multiplicity with the
mouse sgRNA library lentivirus pool (see Supplementary Information and
Extended Data Fig. 6 for additional technical details). Control transductions were
performed to ensure that the transduction rate did not exceed 50%. Cell numbers
were maintained throughout the experiment at levels adequate to exceed 1,0003

representation of the library. 10 mg ml21 blasticidin and 1mg ml21 puromycin
were added 24 h after transduction to select for lentiviral library integrants in cells
with Cas9. Subsequently cells were cultured for 2 weeks. The top and bottom 5%
of ey-mCherry-expressing cells exposed to the library were sorted by FACS. A
non-targeting sgRNA sample was used as a negative control and Bcl11a exon 2 as
a positive control to establish flow cytometry conditions. After sorting, library
preparation and deep sequencing were performed as described for the human
library25.

sgRNA sequences present in the Hbb-ey:mCherry-high and Hbb-ey:mCherry-
low pools were enumerated. Cellular dropout and ey enrichment scores were
calculated analogously to the human screen. sgRNA sequences were then mapped
to the mouse genome (mm9).
Generation of genomic deletions in MEL cells. Deletions in MEL cells were
generated using two sgRNA as previously described36. Briefly, sgRNA sequences
were cloned into pX330 (Addgene plasmid ID 42230) using a Golden Gate
assembly cloning strategy (Supplementary Table 1). MEL cells were electropo-
rated with 5 mg of each pX330-sgRNA plasmid and 0.5 mg pmax–GFP (Lonza) in
BTX electroporation buffer using a BTX electroporator (Harvard Apparatus).
Approximately 48 h post-electroporation, the top 1–3% of GFP1cells were sorted
and plated clonally at limiting dilution. Clones were allowed to grow for 7–10
days. Clones were screened for deletion by conventional PCR using the same
strategy as with the HUDEP-2 cells (Supplementary Tables 2 and 4). Inversion
clones were identified by PCR as previously described36 (Supplementary Table 3).
Generation of genomic deletions in mouse embryonic stem cells (mESCs).
mESCs were maintained on irradiated mouse embryonic fibroblasts (GlobalStem)
and cultured in high glucose DMEM supplemented with 15% FBS, 1% L-glutamine,
2% penicillin/streptomycin (Life Technologies), 100mM non-essential amino acids
(Life Technologies), 1% nucleosides (Sigma), 1024 M b-mercaptoethanol (Sigma),
and 103 U ml21 leukaemia inhibitory factor (Millipore). Cells were passaged using
0.25% trypsin (Life Technologies).

The Bcl11a 162 deletion mice were derived from CRISPR-Cas9 modified CJ9
ES cells. Using Amaxa ES Cell transfection reagent (Lonza), two million mESCs
were electroporated with 2 mg of each pX330 plasmid vector containing indi-
vidual target sequences flanking the 162 site along with 0.5mg of a GFP plasmid.
After 48 h, the top 5% of GFP expressing cells were sorted, plated on irradiated
fibroblasts and maintained. Individual ES cell colonies were then picked and
screened for biallelic deletion using the same strategy as HUDEP-2 and MEL
cells36. DNA for screening CRISPR-Cas9 modified clones was obtained from
gelatin adapted ES cell clones to avoid genomic contamination from the fibro-
blasts. Correctly targeted clones with greater than 80% normal karyotype were
used to generate mice. Clones were injected into embryonic day 3.5 (E3.5) C57BL/
6 blastocysts and implanted into pseudo-pregnant females.

The b-YAC mouse line (A20), previously described as containing a transgene
encompassing ,150 kb of the human b-globin locus43, was used to analyse
human globin expression. The mouse line was maintained in a hemizygous state
and bred with Bcl11a 162 deletion mice. Sufficient matings were established to
ensure adequate homozygotes for analysis.
Mouse cell and tissue analysis. The experiments were not randomized and the
investigators were not blinded to allocation during experiments and outcome
assessment. For developmental haematopoiesis, fetal liver cells were taken at
E12.5, E14.5, E16.5 and E18.5 and mechanically dissociated to form single cell
suspensions from which RNA was extracted using the RNeasy Plus Mini Kit
(Qiagen) and analysed. At E16.5, fetal livers were also stained with CD19-PerCP-
Cy5.5 (Clone 1D3; eBioscience), B220-APC (RA3-6B2; Biolegend), CD71-PE
(Clone C2; BD Biosciences), and Ter119-FITC (Clone Ter119; BD Biosciences)
to isolate B cells (B2201CD191) and erythroid cells (Ter1191CD711) by FACS
for RNA extraction and Bcl11a quantification. Additionally, flow cytometry was
used to analyse fetal liver from E18.5 embryos. Single cell suspensions were stained
with IgM-FITC (Clone Il-41; eBioscience), CD19-PerCP-Cy5.5, (Clone 1D3;
eBioscience), CD43-PE (Clone S7; eBioscience), AA4.1-PE-Cy7 (Clone AA4.1;
BD Biosciences), B220-APC, (RA3-6B2; Biolegend), and DAPI (Invitrogen). For
adult haematopoietic assays, peripheral blood was obtained from the tail vein of
4-week-old male and female mice. Blood was collected in EDTA-coated tubes, red
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cells removed by 2% dextran (Sigma), residual red cells lysed with ammonium
chloride solution (Stem Cell Technologies) and stained with the following
anti-mouse antibodies: CD3e-FITC (Clone 145-2C11; Biolegend), CD19-
PerCP-Cy5.5 (Clone 1D3; eBioscience), CD71-PE (Clone C2; BD Biosciences),
NK1.1-PE-Cy5 (Clone PK136; Biolegend), Ter119-APC (Clone TER-119;
Biolegend), Gr-1-eF450 (Clone RB6-8C5; eBioscience), B220-BV605 (RA3-
6B2; Biolegend), Mac-1-BV510 (Clone M1/70; Biolegend), and 7-AAD (BD
Biosciences). Fetal brain analysis was conducted on whole brains from E16.5
mouse embryos on ice-cold PBS. Tissue was directly lysed into the RLT plus
buffer (Qiagen) and total RNA extracted according to manufacturer’s instruc-
tions provided in the RNeasy Plus Mini Kit. RT-qPCR was performed as above,
with gene expression normalized to Gapdh. All gene expression data represent the
mean of at least three technical replicates. All animal experiments were conducted
under the approval of the local Institutional Animal Care and Use Committee.
Cloning lentiCas9-Venus. Venus template59 was PCR amplified to add BamHI
(59) and EcoRI (39) restriction sites (lowercase font) for cloning purposes
using the following conditions: KOD buffer (13), MgSO4 (1.5 mM), dNTPs
(0.2 mM each), forward primer (0.3 mM; [GGCCGGCCggatccGGCGCAACA
AACTTCTCTCTGCTGAAACAAGCCGGAGATGTCGAAGAGAATCCTGG
ACCGATGGTGAGCAAGGGCGAGGA), reverse primer (0.3mM; GGCCGGC
CgaattcTTACTTGTACAGCTCGTCCA), and KOD Hot Start DNA Polymerase
(0.02 Uml21) (Millipore). KOD PCR reaction used the following cycling condi-
tions: 95 uC for 2 min; 50 cycles of 95 uC for 20 s, 60 uC for 20 s, and 70 uC for 30 s;
60 uC for 5 min. PCR products were purified (QIAquick PCR Purification Kit,
Qiagen) and blunt end cloned with Zero Blunt PCR cloning kit (Invitrogen).
PCR-blunt cloned products and lentiCas9-Blast (Addgene plasmid ID 52962)
were separately digested with BamHI-HF (New England Biolabs) and EcoRI-
HF (New England Biolabs) in 13 Buffer CutSmart at 37 uC (New England
Biolabs). Digest of lentiCas9-Blast was performed to remove the blasticidin cas-
sette. Then digested PCR product was ligated into the lentiCas9 backbone.
Cloning lentiGuide-Crimson. E2-Crimson template (Clontech) was PCR amp-
lified to add BsiWI (59) and MluI (39) restriction sites for cloning purposes using
the following conditions: KOD buffer (13), MgSO4 (1.5 mM), dNTPs (0.2 mM
each), forward primer (0.3mM; GGCCGGCCCGTACGcgtacgGCCACCATG
GATAGCACTGAGAACGTCATCAAGCCCTT), reverse primer (0.3mM; GG
CCGGCCacgcgtCTACTGGAACAGGTGGTGGCGGGCCT), and KOD Hot
Start DNA Polymerase (0.02 U ml21). KOD PCR reaction used the following
cycling conditions: 95 uC for 2 min; 50 cycles of 95 uC for 20 s, 60 uC for 20 s,
and 70 uC for 30 s; 60 uC for 5 min. PCR products were purified (QIAquick PCR
Purification Kit) and cloned with Zero Blunt PCR cloning kit. Cloned products
and lentiGuide-puro were separately digested with BsiWI (New England Biolabs)
and MluI (New England Biolabs) in 13 buffer 3.1 at 37 uC (New England
Biolabs). Digest of lentiGuide-Puro (Addgene plasmid ID 52963) was performed
to remove the puromycin cassette. Then digested PCR product was ligated into
the lentiGuide backbone.
Cloning sgRNAs. lentiGuide-Puro (Addgene plasmid ID 52963) was digested
with BsmBI in 13 buffer 3.1 at 55 uC (New England Biolabs) for linearization.
One unit of TSAP thermosensitive alkaline phosphatase (Promega) was added for
1 h at 37 uC to dephosphorylate the linearized lentiGuide and then TSAP was heat
inactivated at 74 uC for 15 min. Linearized and dephosphorylated lentiGuide was
run on an agarose gel and gel purified. sgRNA-specifying oligos were phosphory-
lated and annealed using the following conditions: sgRNA sequence oligo
(10mM); sgRNA sequence reverse complement oligo (10mM); T4 ligation buffer
(13) (New England Biolabs); and T4 polynucleotide kinase (5 units) (New
England Biolabs) with the following temperature conditions: 37 uC for 30 min;
95 uC for 5 min; and then ramp down to 25 uC at 5 uC min21. Annealed oligos
were ligated into lentiGuide in a 1:3 ratio (vector:insert) using T4 ligation buffer
(13) and T4 DNA Ligase (750 units) (New England Biolabs). Plasmids were
verified by sequencing using a U6 promoter forward primer CGTAACTTG
AAAGTATTTCGATTTCTTGGC.

sgRNA-specifying oligos using sgRNA sequences from the screen library (see
Source Data associated with Figs 2 and 5) were obtained and cloned as described
into either lentiGuide-Puro or lentiGuide-Crimson. sgRNA constructs were used
to produce lentivirus and transduce HUDEP-2 with stable Cas9 expression. Bulk
cultures were incubated for 7–10 days with 10mg ml21 blasticidin and 1 mg ml21

puromycin selection to allow for editing. Then bulk cultures were plated clonally

at limiting dilution. Clones were allowed to grow for approximately 14 days and
then genomic DNA was extracted using 50 ml QuickExtract DNA Extraction
Solution per well.
lentiTandemGuide cloning. lentiGuide-sgRNA1 was digested with PspXI and
XmaI at 37 uC for 4 h (New England Biolabs). Digests were run on an agarose gel
and gel purified. lentiGuide-sgRNA2 was linearized using NotI (New England
Biolabs). The hU6 promoter and sgRNA chimaeric backbone for lentiGuide-
sgRNA2 was PCR amplified using the following conditions: KOD buffer (13),
MgSO4 (1.5 mM), dNTPs (0.2 mM each), forward primer (0.3 mM; GGCCGGCC
gctcgaggGAGGGCCTATTTCC), reverse primer (0.3 mM; CCGGCCGGcccgggT
TGTGGATGAATACTGCCATTT), and KOD Hot Start DNA Polymerase
(0.02 Uml21) (Millipore). KOD PCR reaction used the following cycling condi-
tions: 95 uC for 2 min; 50 cycles of 95 uC for 20 s, 60 uC for 20 s, and 70 uC for 30 s;
60 uC for 5 min. PCR products were purified (QIAquick PCR Purification Kit),
blunt-ended cloned with Zero Blunt PCR cloning kit, transformed, and plated.
Colonies were screened by digesting minipreps with EcoRI. Mini-preps were then
digested with PspXI and XmaI as described above followed by PCR purification.
After PCR purification, sgRNA2 was ligated into digested lentiGuide-sgRNA1.
Sequence was verified with following primers: GGAGGCTTGGTAGGTTTA
AGAA and CCAATTCCCACTCCTTTCAA.
Generation of HUDEP-2 with stable Cas9. lentiCas9-Blast (Addgene plasmid
ID 52962) or lentiCas9-Venus were produced as described above and used to
transduce HUDEP-2 cells. Transduced cells were selected with 10mg ml21 blas-
ticidin or Venus1 cells were sorted. Functional Cas9 was confirmed using the
pXPR-011 (Addgene plasmid ID 59702) GFP reporter assay as previously
described60.
Generation of ey:mCherry reporter MEL cells. A reporter MEL line in which
mCherry was knocked into the Hbb-y locus was created (Extended Data Fig. 6c).
Briefly, a TALEN-induced DSB was created adjacent to the Hbb-y transcriptional
start site. A targeting vector with mCherry and a neomycin cassette was
introduced through homology-directed repair. Homology arms included
mm9 sequences from Chr7:111,001,667–111,002,675 and Chr7:111,000,661–
111,001,666. Cre-mediated recombination was used to remove the neomycin
cassette. Long-range PCR spanning each homology arm was used to ensure
appropriate targeted integration. Cells were tested upon Bcl11a disruption by
RT–qPCR and flow cytometry to confirm expected effects on ey:mCherry dere-
pression. Subsequently, CRISPR-Cas9 was used as described above to produce
cells with monoallelic composite enhancer deletion to maximize screening sens-
itivity for enhancer disruption.
Generation of MEL cells with stable Cas9 expression. lentiCas9-Blast (Addgene
plasmid ID 52962) lentivirus was produced as described above and used to
transduce MEL cells. Transduced cells were selected with 10 mg ml21 blasticidin.
Functional Cas9 was confirmed using the pXPR-011 (Addgene plasmid ID
59702) GFP reporter assay as previously described60.
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Extended Data Figure 1 | Human BCL11A locus. a, Schematic of the human
BCL11A locus (hg19, transcription from right to left) with erythroid chromatin
marks and trait-associated haplotype denoted, and composite enhancer as

previously defined28. b, Ranked enhancers in primary human adult erythroid
precursors by H3K27ac signal intensity, with super-enhancers shaded, and
super-enhancer-associated genes indicated.
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Extended Data Figure 2 | Tiled pooled in situ CRISPR-Cas9 BCL11A
enhancer screen. a, Distribution of NGG and NAG PAM sgRNAs mapped to
genomic cleavage position. The vertical lines represent cleavage sites for
sgRNAs mapped to plus and minus strands. b, Gap distance between adjacent
genomic cleavage position for NAG PAM sgRNAs. c, Library composition
by target sequence and PAM restriction. d, Representation of both NGG and
NAG sgRNA (1,338 sgRNAs in total) within the plasmid pool by deep
sequencing. The median was 718 normalized reads and the 10th and 90th
percentiles (indicated by the vertical dotted lines) ranged from 337 to 1,205
normalized reads. e, HbF distribution in HUDEP-2 cells transduced with Cas9
and individual sgRNAs, either non-targeting or targeting BCL11A exon 2.

f, HbF enrichment scores of NGG sgRNAs in six biological replicates. g, Sort of
library-transduced cells into HbF-high and HbF-low pools. h, Control
sgRNA enrichment. Boxes demonstrate 25th, median, and 75th percentiles
and whiskers minimum and maximum values. ****P , 0.0001, NS, non-
significant. i, NGG sgRNA representation in plasmid pool and cells at
conclusion of experiment (left), and in HbF-high and HbF-low pools (right),
with dotted lines at x 5 y and x 5 8y. j, Quantile–quantile plots of NGG sgRNA
enrichment scores. k, Cellular dropout scores of NGG sgRNAs relative to
genomic cleavage position and repetitive elements. Non-targeting sgRNAs
pseudo-mapped with 5-bp spacing.
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Extended Data Figure 3 | Validation of enhancer screen. a, HbF1 fraction in
HUDEP-2 cells transduced in arrayed format with 24 sgRNAs from all 5
mapping categories with enrichment scores ranging from the highest to the
lowest in the screen. b, Correlation between HbF enrichment score from pooled
sgRNA screen and HbF1 fraction by arrayed validation of individual

sgRNAs in HUDEP-2 cells. c, Erythroid differentiation of primary human
erythroid precursors evaluated by CD71 and CD235a surface markers,
enucleation frequency (CD235a1 Hoescht333422), and morphology by
May–Grünwald Giemsa staining.
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Extended Data Figure 4 | Functional assessment of enhancer sequences.
a, Topology of the HMM used to infer the three functional enhancer states
(active, repressive and neutral). The emission probabilities of HbF enrichment
scores from each state were modelled as Gaussian distributions (the values of m
and s2 are shown). The transition probabilities (arrows) are displayed.
b, Frequency distribution of indels from HUDEP-2 cells exposed to Cas9 and

individual sgRNAs, sorted into HbF-high and HbF-low pools, and subjected to
deep sequencing of the target site. Indels calculated on a per nucleotide basis
throughout an amplicon surrounding the sgRNA-1617 and -1621 cleavage sites
(dotted lines). An indel enrichment ratio was calculated by dividing normalized
indel frequencies in the HbF-high pool by those in the HbF-low pool.
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Extended Data Figure 5 | Functional cores of the BCL11A enhancer.
a–c, 200 bp at the functional cores of DHSs h155, h158 and h162 defined by
HMM states (active, red; repressive, green). HbF enrichment scores are shown
by grey lines and circles. HbF indel enrichment per nucleotide based on
amplicon genomic sequencing of sorted cells exposed to either sgRNA-1617
(top) or -1621 (bottom) is shown. Common SNPs (MAF . 1%) are shown with
dotted lines with HbF-low allele in blue and HbF-high allele in red; no
common SNPs are present at the h158 region. JASPAR motifs (P , 1024) are
depicted in black except for those with allele-specific significance depicted
by allelic colour. Selected motifs annotated by transcription factor on the basis

of known erythroid-specific function or genomic position. Motif LOGOs at key
positions with motif scores P , 1023 as described in text. Dotted boxes
show regions of highest HbF enrichment score at each core with underlying
predicted motifs. Orthologous sequences are listed from representative
primates and nonprimates of distributed phylogeny. PhyloP (scale from 24.5
to 4.88) and PhastCons (from 0 to 1) estimates of evolutionary conservation
among 100 vertebrates are shown. An arrow indicates a 144 bp insertion in
the mouse genome relative to the human reference adjacent to the orthologous
GATA1 motif at h158.
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Extended Data Figure 6 | Tiled pooled in situ CRISPR-Cas9 Bcl11a
enhancer screen. a, Schematic of the mouse Bcl11a locus (mm9, transcription
from left to right) with erythroid chromatin marks (top, dark blue H3K27ac
from ref. 55; middle, light blue H3K27ac from ref. 56; and bottom, black
DNase I from ref. 28) and regions of primary sequence homology to the human
DHSs displayed. y axes for H3K27ac tracks are both scaled to maximum 3.5
reads per million. Composite enhancer as previously defined28. b, Ranked
enhancers in mouse erythroid precursors by H3K27ac signal intensity55,56, with
super-enhancers shaded. Super-enhancer associated genes are indicated by
Venn diagram. c, Strategy to knock-in by homology-directed repair the
fluorescent protein mCherry into the mouse embryonic globin Hbb-y locus
(encoding the ey embryonic globin chain). d, Distribution of NGG and NAG
PAM sgRNAs mapped to genomic cleavage position with vertical lines

representing cleavage sites for sgRNAs mapped to plus and minus strands.
e, Distance to adjacent genomic cleavage position for NGG (left) and NAG
(right) PAM sgRNAs. f, Representation of the 1,271 NGG and NAG sgRNAs
within the plasmid pool by deep sequencing. The median was 735 normalized
reads and the 10th and 90th percentiles (indicated by the vertical dotted
lines) ranged from 393 to 1,240 normalized reads. g, Library composition by
target sequence and PAM restriction. h, mCherry expression upon exposure to
Cas9 and an individual NGG sgRNA targeting Bcl11a exon 2 in MEL
ey:mCherry reporter cells. i, ey:mCherry sort of library transduced cells.
j, Control sgRNA enrichment. Boxes demonstrate 25th, median and 75th
percentiles and whiskers minimum and maximum values. ****P , 0.0001.
k, Enrichment scores of NGG sgRNAs between four biological replicates.
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Extended Data Figure 7 | Bcl11a enhancer screen analyses. a, NGG sgRNA
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Extended Data Figure 8 | Functional sequences at the Bcl11a erythroid
enhancer. a–c, HMM segmentation of active functional states at m155, m158
and m162 orthologues. HbF enrichment scores are shown as grey lines and
circles with the blue line representing smoothed enrichment score. DNase I
sequencing from mouse fetal liver erythroid precursors28. PhyloP (scale
from 23.3 to 2.1) and PhastCons (from 0 to 1) estimates of evolutionary
conservation among 30 vertebrates are shown. d, Top: Bcl11a expression
determined by RT–qPCR displayed as a heat map in 108 hemizygous m162

orthologue deletion clones ordered by genomic position of deletion midpoint.
Each bar demonstrates the genomic position of the deletion breakpoints and
the associated colour demonstrates the level of Bcl11a expression. Bottom:
Bcl11a expression determined by RT–qPCR in 108 hemizygous m162
orthologue deletion clones. Per nucleotide mean effect size was calculated as
the mean fold change in Bcl11a expression from all clones in which that
nucleotide was deleted. Grey shading represents one s.d. The Bcl11a expression
data are shown with same x axis as in panel c immediately above.
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Extended Data Figure 10 | Requirement of Bcl11a erythroid enhancer
during murine ontogeny. a, Progeny of heterozygous Bcl11a m162
orthologue deletion intercrosses as compared to expected Mendelian ratio.
b, Fraction of fetal liver comprised of B-cell progenitors at E16.5 from various
genotypes. c, Peripheral blood analysis from 4-week-old mice to examine the

frequency of various circulating haematopoietic lineages in Bcl11a m162
orthologue deletion wild-type, heterozygous, and homozygous mice. d, Bcl11a
expression in b-YAC/162 deletion mice (each symbol represents the mean
expression from technical replicates from an individual mouse). *P , 0.05;
error bars represent s.e.m.
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