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SUMMARY
To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19,
we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-
CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways,
including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these
gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown,
and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes
in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 recep-
tor in the early stages of viral entry, we show that loss ofRAB7A reduces viral entry by sequestering the ACE2
receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the
loss of each host gene on fitness/response to viral infection.
INTRODUCTION

As of October 2020, severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2), the virus that causes COVID-19, has in-

fected 40 million people worldwide and led to the deaths of

more than 1 million people, according to the John Hopkins

Research Center (Gardner, 2020). SARS-CoV-2 belongs to the

family of enveloped viruses known as Coronaviridae and was

first reported in late 2019 in China. Over the past two decades,

it is the third zoonotic coronavirus to emerge: compared to the

other two coronaviruses, SARS-CoV (2002) andMiddle East res-

piratory syndrome (MERS)-CoV (2012), SARS-CoV-2 shows an

increased infectivity and lower case-fatality rate, contributing

to its wide-spread transmission and resulting in a pandemic

(Gates, 2020; Liu et al., 2020). Given that SARS-CoV-2 has

already taken a major toll on human life and livelihoods world-

wide, many research institutions, governmental organizations,

and pharmaceutical companies are working to identify antiviral

drugs and develop vaccines. Currently, there are nearly 30 vac-

cines against SARS-CoV-2 in clinical trials and a Food and Drug

Administration (FDA)-approved antiviral drug (remdesivir) that

acts as an inhibitor of the SARS-CoV-2 viral RNA-dependent
92 Cell 184, 92–105, January 7, 2021 ª 2020 Elsevier Inc.
RNA polymerase (Beigel et al., 2020; Funk et al., 2020). A recent

study identified small molecules that antagonize SARS-CoV-2

replication and infection by testing �12,000 clinical-stage and

FDA-approved inhibitors (Riva et al., 2020). Here, we utilize

an alternative approach—a genome-scale loss-of-function

screen—to identify targets among host genes that are required

for SARS-CoV-2 infection. These gene targets (and inhibitors

of these genes) may aid in the development of new therapies

for COVID-19.

SARS-CoV-2 is an enveloped positive-sense RNA virus that

relies on host factors for all stages of its life cycle (Kim et al.,

2020; Zhou et al., 2020). The viral envelope is coated by Spike

protein trimers that bind to angiotensin converting-enzyme 2

(ACE2) receptor, which is required for SARS-CoV-2 infection

(Hoffmann et al., 2020a; Zhou et al., 2020). The Spike protein un-

dergoes proteolytic cleavage that is catalyzed by several host

proteases, such as furin, TMPRSS2, and cathepsin L, and can

occur in the secretory pathway of the host cell or during viral en-

try in the target cell. Proteolytic cleavage is considered to be

required for activation of Spike that in turn allows for viral-host

membrane fusion and release of the viral RNA into the host cyto-

plasm (Hoffmann et al., 2020b). Once in the cytoplasm, the virus
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utilizes the host and its own machinery to replicate its genetic

material and assemble new viral particles. Recent proteomic

studies have identified hundreds of host proteins that directly

bind to SARS-CoV-2 viral proteins and have mapped changes

in the global protein phosphorylation landscape in response to

viral infection, highlighting the interest in better understanding

of host-virus genetic dependencies (Bouhaddou et al., 2020;

Gordon et al., 2020). To date, there are no genome-wide studies

that directly identify human genes required for viral infection,

which will be of great interest and utility for the broader scientific

community.

Here, we perform a genome-scale CRISPR loss-of-function

screen in human alveolar basal epithelial carcinoma cells to iden-

tify genes whose loss confers resistance to SARS-CoV-2 viral

infection. We validate that these genes reduce SARS-CoV-2

infection using multiple orthogonal cell perturbations (CRISPR

knockout, RNA interference knockdown, and small-molecule in-

hibitors). For the top gene hits, we explore potential mechanisms

of their antiviral activity using single-cell transcriptomics, flow

cytometry, and immunofluorescence. Using single-cell tran-

scriptomics, we identified a group of genes (ATP6AP1,

ATP6V1A, NPC1, RAB7A, CCDC22, and PIK3C3) whose

knockout induced shared transcriptional changes in cholesterol

biosynthesis pathway. Perturbation of the cholesterol biosyn-

thesis pathway with the small molecule amlodipine reduced viral

infection. In addition, we show that loss of RAB7A reduces viral

entry by sequestering ACE2 receptors inside cells through

altered endosomal trafficking. Prior to this study, our knowledge

of essential host genes for SARS-CoV-2 has been limited to only

a handful of genes, such as ACE2 and cathepsin L: this work pro-

vides a quantitative resource of the impact of each gene’s loss

on response to viral infection for every protein-coding gene in

the human genome.

RESULTS

A High-Throughput Screen to Identify Genes Required
for SARS-CoV-2 Infection
To identify key genes required for SARS-CoV-2 infection, we

performed a genome-scale loss-of-function screen targeting

19,050 genes in the human genome using the GeCKOv2

CRISPR-Cas9 library (Sanjana et al., 2014). TheGeCKOv2 library

contains 122,411 CRISPR single-guide RNAs (sgRNAs) (6 guide

RNAs per gene) and has previously been used in CRISPR

screens for drug resistance, immunotherapy, synthetic lethality,

mitochondrial disease, and therapeutic discovery for muscular

dystrophy (Erb et al., 2017; Jain et al., 2016; Lek et al., 2020; Pa-

tel et al., 2017; Shalem et al., 2014). First, we transduced a hu-

man alveolar basal epithelial carcinoma cell line (A549) that

constitutively expresses ACE2 (referred to as A549ACE2) with

an all-in-one lentiviral vector containing Cas9, guide RNAs

from the GeCKOv2 human library, and a puromycin resistance

gene. The transduction was performed at a low multiplicity of

infection (MOI �0.2) to ensure that most cells would receive

only one guide RNA construct (Figure 1A). We then selected

with puromycin so that only library-transduced cells remained.

We also measured the survival rate after puromycin selection

was complete (3 days) to ensure high coverage of the 122,411
guide RNAs (�1,000 cells per guide RNA). After puromycin se-

lection was complete, we cultured the cells for 9 days to ensure

protein depletion after CRISPR gene targeting.

Next, we infected the GeCKOv2 pool of A549ACE2 cells with

SARS-CoV-2 virus (Isolate USA-WA1/2020 NR-52281) at either

a high (0.3) or a low (0.01) MOI. We verified that SARS-CoV-2 in-

fects A549ACE2 cells by staining for the nucleocapsid (N) protein

at 24 h post-infection (Figure 1B), and at day 6 post-infection, we

measured cell survival for both the high and low MOI conditions

(Figure 1C). As expected, the higher MOI infection resulted in

fewer surviving cells at day 6 post-infection. Next, we extracted

genomic DNA, and via amplicon sequencing, we quantified

guide abundance in each biological condition (Figure 1A). To

confirm that library representation was properly maintained,

we computed the correlation between the guide representation

in the plasmid library and after puromycin selection (r = 0.84)

(Figure S1A). In contrast, after SARS-CoV-2 infection, there

was a much greater degree of guide dropout, as expected given

that SARS-CoV-2 rapidly kills A549ACE2 cells without CRISPR

perturbations (Figures 1C and 1D).

Using robust-rank aggregation (RRA) on the guide relative en-

richments, we computed gene-level scores to identify genes

where loss-of-function mutations led to enrichment within the

pool (Figure 1E; Kolde et al., 2012). We identified �1,000 genes

with significant RRA enrichment (p < 0.05) (Figure S1B). We also

used two other previously published methods to compute gene

enrichments (RIGER weighted-sum and second-best rank) and

found a high degree of overlap between enriched genes identi-

fied by all three methods (Figure S1C; Chen et al., 2015; Luo

et al., 2008).We also found a high degree of shared genes across

both the low and high SARS-CoV-2MOI conditions: when exam-

ining the top 50 most enriched genes, we found that 27 of them

were shared between the low and high MOI conditions (Fig-

ure 1F; Table S1), suggesting that several host genes involved

in viral pathogenesis function independently of viral dose. An in-

dependent genome-scale CRISPR screen for SARS-CoV-2

infection also performed in A549 that overexpress ACE2 but

with a different CRISPR library identified similar top-ranked

genes (Zhu et al., 2020), highlighting the robustness of our results

(Figure S1D).

Enriched Genes Are Involved in Multiple Aspects of the
Viral Life Cycle and Are Broadly Expressed
Upon close examination of the most enriched genes, we found

genes involved in key aspects of viral entry and replication (Fig-

ure 2; Du et al., 2009). For example, thewell-established entry re-

ceptor angiotensin-converting enzyme 2 (ACE2) receptor was

ranked as the 8th most-enriched gene in the low MOI screen

and 12th in the high MOI screen (Table S1; Hoffmann et al.,

2020a; Zhou et al., 2020). Among the top 50 enriched genes,

we identified several sets of related genes that function together

in complexes, giving us further confidence in the genome-scale

screen (Figures 2 and 3A). We found genes essential for initial

attachment and endocytosis (ACE2, RAB7A, and 4 members

of the ARP2/3 complex: ACTR2, ACTR3, ARPC3, and ARPC4),

Spike protein cleavage and viral membrane fusion (CTSL and

13 members of the vacuolar-ATPase proton pump: ATP6AP1,

ATP6AP2, ATP6V0B ATP6V0C, ATP6V0D1, ATP6V1A,
Cell 184, 92–105, January 7, 2021 93
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Figure 1. A Genome-Scale CRISPR Loss-of-Function Screen to Identify Genes that Prevent SARS-CoV-2 Infection of Human Alveolar

Epithelial Carcinoma Cells

(A) Overview of the genome-scale loss-of-function screen for host factors in human A549ACE2 cells requires for SARS-CoV-2 infection.

(B) Immunofluorescence of SARS-CoV-2 nucleocapsid (N) protein and DAPI labeling of human A549ACE2 cells at 24 h post-infection.

(C) Percent survival of human A549ACE2 cells transduced with the GeCKOv2 library with the indicated SARS-CoV-2 viral amount (MOI) at 6 days post-infection.

(D) Scatterplot of guide RNA read counts from A549ACE2 cells at 6 days post-infection with SARS-CoV-2 (MOI ~0.01) versus cells prior to infection. Read counts

are normalized log2 reads.

(E) Volcano plot of median fold-change of guide RNAs for each gene and log10 robust rank aggregation (RRA) p values. All genes with |fold-change| > 4 and RRA

p < 10�3 are labeled.

(F) Overlap of top 50 ranked genes between the MOI 0.01 and MOI 0.3 screen.

See also Figure S1 and Table S1.
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ATP6V1B2, ATP6V1C1, ATP6V1E1, ATP6V1G1, ATP6V1H,

TMEM199, and TOR1AIP1), endosome recycling (4 members

of the endosomal protein sorting Retromer complex: VPS26A,

VPS29, VPS35, and SNX27; 4 members of the endosomal traf-

ficking Commander complex: COMMD2, COMMD3,

COMMD3-BMI1, and COMMD4; and 3 members of the PI3K

pathway: PIK3C3/VPS34, WDR81, and ACP5), ER-Golgi traf-

ficking (DPM3, ERMP1, PPID, and CHST14), and transcriptional

modulators (SLTM and SPEN). A consistent theme among the

enriched complexes is endosome function and regulation (V-

ATPase proton pump, Retromer, Commander, class 3 PI3Ks)

(Banerjee and Kane, 2020; Mallam and Marcotte, 2017; McNally

and Cullen, 2018). Gene set enrichment analysis on the full

ranked list of genes identified significantly enriched Gene

Ontology (GO) categories for endosome processing, transport,

and acidification and categories related to cytokinesis and virion

attachment (false discovery rate [FDR] q < 0.1) (Figures 3B and

S2A–S2D; Table S2; Subramanian et al., 2005).

Although we performed our CRISPR screen in human lung

cells, we explored whether the expression of host genes whose
94 Cell 184, 92–105, January 7, 2021
loss reduces SARS-CoV-2 infection were lung-specific or more

broadly expressed. To answer this question, we took the top-

ranked genes and examined their expression across 12 tissues

using 4,790 RNA-sequencing datasets from the Genotype-Tis-

sue Expression (GTEx) v8 database (Figure 3C; Aguet et al.,

2019). Virtually all of the top gene hits were broadly expressed

across all tissues, implying that these mechanisms may function

independent of cell or tissue type. Among the top-ranked genes,

only ACE2 showed tissue-specific expression with a particular

enrichment in testis, small intestine, kidney, andheart (Figure 3C).

Enriched Genes Have Been Suggested to Interact with
Viral Proteins and Are Also Essential for Other Viral
Pathogens
Recently, Gordon et al. (2020) performed an in-depth study of

SARS-CoV-2 protein-protein interaction networks by overex-

pressing affinity-tagged versions of each protein encoded in

the viral genome followed by tandem mass spectrometry after

pull-down. Their study identified 332 high-confidence SARS-

CoV-2-human protein-protein interactions (PPIs). We found



Figure 2. Top-Ranked Genes from the CRISPR Screen Are Involved in Key Elements of the SARS-CoV-2 Viral Life Cycle

Schematic of SARS-CoV-2 docking, entry, RNA genome release and transcription, and virion replication, assembly, and release with top-ranked host genes from

the CRISPR screen highlighted in red. All genes shown are ranked in the top 50 genes (top ~0.25% of library) in the lowMOI CRISPR screen using RRA. Adapted

from Du et al. (2009).

See also Figure S2 and Table S2.
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that some of the highly ranked genes from our loss-of-function

screen were reported to have direct PPI with different viral pro-

teins (Figure 3D; Table S2). For example, two highly ranked sub-

units of the vacuolar-ATPase proton pump, ATP6AP1 and

ATP6V1A, interact with SARS-CoV-2 non-structural protein 6

(nsp6) andmembrane (M) protein, respectively. ATP6AP1, which

was ranked 2nd in the lowMOI CRISPR screen and 4th in the high

MOI CRISPR screen, has a very strong PPI interaction with nsp6

(mass spectrometry interaction statistics [MIST] score = 0.99)

(Verschueren et al., 2015). Another key endocytosis protein,

RAB7A, is ranked in the top 50 genes in both CRISPR screens

and interacts strongly with non-structural protein 7 (nsp7)

(MIST score = 0.97). We also compared the top-ranked genes

with another proteomic study that used proximity labeling in

A549 cells overexpressing BioID-tagged viral proteins and found
that 22 out of the top 50 low MOI CRISPR screen genes had

direct interactions with viral genes—a significant enrichment

over randomly chosen genes (p = 23 10�4) (Samavarchi-Tehrani

et al., 2020).

Because similar loss-of-function CRISPR screens have been

performed to identify host genes required for other viral patho-

gens, we next sought to understand whether the hits identified

in our SARS-CoV-2 screen were shared with those identified in

prior screens for Zika virus (ZIKV) and pandemic H1N1 avian

influenza (IAV) (Li et al., 2019, 2020). We examined whether

top-ranked hits from the ZIKV and IAV screens shared similar

genes and similar functional categories. Overall, there was

greater similarity between GO categories of enriched genes for

SARS-CoV-2 and ZIKV (Figure 3E; Table S2). When examining

the top 50 genes from the SARS-CoV-2 screen, we found several
Cell 184, 92–105, January 7, 2021 95
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B Figure 3. Enriched Genes Cluster into

Related Pathways, Are Expressed Broadly,

Interact Directly with Viral Proteins, and

Are Also Involved in Viral Pathogenesis of

Pandemic Flu and Zika Virus

(A) Classification of genes shown in Figure 2 (top-

ranked ~0.25% of the GeCKOv2 library) into

specific complexes.

(B) Gene set enrichment analysis normalized

enrichment scores for all significant (FDR q < 0.1)

Gene Ontology (GO) biological processes.

(C) Expression of top-ranked genes (same as in A)

across the indicated human tissues from GTEx v8.

Gene expression color scale is transcripts per

million (TPM).

(D) RRA fold-change for the low MOI CRISPR

screen for the high-confidence protein-protein

interaction with the maximum fold-change for

each viral gene from the Gordon et al. (2020) mass

spectrometry dataset.

(E) Clustering of top-ranked GO biological pro-

cesses for CRISPR screens for Zika virus ZIKV (Li

et al., 2019), H1N1 pandemic avian influenza IAV

(Li et al., 2020), and SARS-CoV-2 (this study).

See also Figure S2 and Table S2.
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genes that were highly enriched in all 3 viral pathogen screens

(Figure S2E). This group included subunits of the vacuolar-

ATPase proton pump, a well-known family of genes essential

for acidification and endosomal processing (Banerjee and

Kane, 2020).

Validation of Enriched Genes Using CRISPR Knockout,
RNA Interference, and Small Molecule Inhibitors
To test the ability of top-ranked genes to block SARS-CoV-2 viral

infection, we picked 30 genes ranked among the top 200 genes

in our RRA analysis for independent validation. Each gene was

targeted with 3 guide RNAs distinct from the guides present in

the GeCKOv2 genome-wide CRISPR library (Table S3). The

guides were synthesized individually and cloned into the pCC1

lentiviral vector, a modified version of lentiCRISPRv2 with the

F+E optimized guide RNA scaffold (Legut et al., 2020). For a sub-

set of genes, we validated Cas9-mediated loss-of-function by

western blot for protein expression (Figure S3A).

Cas9-perturbed A549ACE2 lines were infected with SARS-

CoV-2 at an MOI of 0.1 and the percentage of infected cells

was determined by immunofluorescence against the SARS-

CoV-2 N protein at 36 h post-infection (hpi). For all of the

Cas9-perturbed cell lines, we observed a reduced percentage

of infected cells with an up to 10-fold reduction in SARS-CoV-

2 infection, compared to the cell lines with non-targeting sgRNAs

(Figures 4A and 4B). Among the genes where loss provided the

greatest protection against SARS-CoV-2 infection were vesicu-

lar trafficking genes likeRAB7A,CCDC22, and VPS35, and other

geneswith well-established roles such as the ACE2 receptor and

the protease cathepsin L (CTSL) (Figure 4B). We found a signif-

icant negative correlation between the percent infection in the ar-

rayed CRISPR validation and the median fold-change from the

genome-wide CRISPR screen (rs = �0.6, p = 5 3 10�4)

(Figure 4C).

For these genes, we performed a full multi-step viral replica-

tion growth curve and found that the CRISPR perturbations

decrease viral load across all time points (5, 10, 24, and 48 h)

compared to the non-targeting control (Figure S3B). To test if

the identified hits block viral infection in other cell lines, for 8

genes we generated polyclonal CRISPR knockouts in a human

liver cell line (Huh7.5ACE2), which were then infected with

SARS-CoV-2 at anMOI of 0.1. Compared to non-targeting guide

RNA controls, we found reduced infection with all 8 genes tested

in the Huh7.5ACE2 cells (Figure S3C).

As an orthogonal gene perturbation method, we also validated

a more extensive list of top-ranked genes via siRNA knockdown

for 48 h, followed by infection with SARS-CoV-2 at MOI of 0.1

(Table S3). Quantification of N-protein immunofluorescent im-

ages revealed a substantial reduction of the percent infected

cells (Figure S3D).

By cross-referencing highly ranked genes from the CRISPR

screen with the Drug Gene Interaction database (DGIdb), we

identified a set of 69 druggable genes (Figure 4D; Table S4; Cotto

et al., 2018). We selected 9 genes that were a primary or a sec-

ondary target of one of the 26 small molecule inhibitors (Fig-

ure 4E). Among the 26 inhibitors, 9 are FDA approved and 7

are in Phase 2 or Phase 3 clinical trials for diverse diseases (Table

S4). We pre-treated A549ACE2 cells for 2 h with 10 mM of each in-
hibitor and then infected with SARS-CoV-2 and analyzed the

cells at 36 hpi. As a positive control, we also included remdesivir,

which inhibits the viral RNA polymerase and is the only currently

approved treatment for COVID-19 in the United States (Beigel

et al., 2020). We assessed the efficacy of each inhibitor on block-

ing viral infection using immunofluorescence and quantitative

PCR (qPCR).

Seven of the 26 inhibitors that we tested (PIK-III, Compound-

19, SAR405, autophinib, ALLN, tamoxifen, and ilomastat) re-

sulted in >100-fold reduction of viral load as measured by

qPCR (Figure 4E). Among the best performing inhibitors, 4 of

them target the same gene PIK3C3 (also known as VPS34) and

2 inhibitors (autophinib and ALLN) reduced the viral load more

than 1000-fold. Similar results were obtained by immunofluores-

cent imaging of SARS-CoV-2 N protein (Figure S4A). By testing

the top four PIK3C3 inhibitors in combination with CRISPR tar-

geting of PIK3C3, we found that Compound-19, PIK-III and auto-

phinib were specific while SAR405 resulted in greater viral inhibi-

tion in PIK3C3 CRISPR-perturbed cells, suggesting some

potential off-target activity for SAR405 (Figure S4B).

Combinations of some of the top performing inhibitors overall

showed an additive effect and further protected the cells from

SARS-CoV-2 infection (Figure S4C). Next we measured cell

viability at 36 h post-inhibitor treatment using flow cytometry.

We observed more than 50% reduction of A549ACE2 cell viability

with two pan-HDAC inhibitors, panobinostat and pracinostat

(Figure 4F).

Single-Cell Sequencing Identifies Cholesterol
Biosynthesis as a Common Mechanism Underlying
Multiple Enriched Genes from the CRISPR Screen
Next, we sought to understand the mechanisms underlying how

individual genes identified in our loss-of-function screen prevent

SARS-CoV-2 infection and if host gene loss alters cell transcrip-

tional programs. For this, we utilized the expanded CRISPR-

compatible cellular indexing of transcriptomes and epitopes by

sequencing (ECCITE-seq) method to couple pooled CRISPR

perturbations of our top hit genes with a single-cell transcrip-

tomic and proteomic readout (Mimitou et al., 2019; Figure 5A;

Table S5). ECCITE-seq is a high-throughput approach to identify

the molecular mechanisms and cellular pathways that drive

infection resistance; the pooled format also provides a more

controlled experiment that may be less susceptible to batch vari-

ation. Importantly, cells were infected at lowMOI tomaximize the

fraction of cells that express a single guide RNA, and therefore

can be assigned a specific gene perturbation. For this, we

pooled all individual guide RNA plasmids (3 per target gene)

used to validate our genome-scale screen and 9 non-targeting

(NT) sgRNAs (Figure 4B; Table S3).

In an initial ECCITE-seq experiment, we identified a median of

152 single cells per target gene. We observed specific reduction

of target gene expression in cells grouped by target gene, indi-

cating nonsense-mediated decay of transcripts with frameshift

indel mutations after CRISPR modification (Figure S5A). This ef-

fect wasmore pronounced for genes with higher expression. Us-

ing differential gene expression analysis between cells with non-

targeting guide RNAs and cells with targeting guide RNAs, we

identified for 11 of the 30 target genes more than 5 differentially
Cell 184, 92–105, January 7, 2021 97
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Figure 4. Arrayed Validation of Genome-Scale SARS-CoV-2 Screen and Identification of Druggable Gene Targets

(A) Representative immunofluorescence images of A549ACE2 knockout lines infected with SARS-CoV-2 at MOI of 0.1 and fixed 36 h post-infection (hpi). SARS-

CoV-2 N protein is shown in red and DAPI in blue.

(B) Quantification of SARS-CoV-2 infected A549ACE2 knockout lines immuno-stained with N protein as shown in (A). Each genewas targeted with 3 different guide

RNAs represented as diamond symbols (n = 3 biological replicates, error bars indicate SEM).

(C) Correlation of log2 median fold change from the genome-scale CRISPR screen (low MOI) and percent of infected cells after individual (arrayed) gene

perturbation shown in (B).

(D)Druggablegenes found in theDrugGene Interactiondatabase (DGIdb) amonghighly rankedgenes fromthegenome-scaleCRISPRscreen (rankedbyRRApvalue).

(E) qPCR of SARS-CoV-2 viral load present in A549ACE2 cells pretreated for 2 h with the indicated small molecule inhibitors at 10 mMand then infected with SARS-

CoV-2 at MOI of 0.1. The qPCR was performed at 36 hpi. Red bars indicate inhibitors that yield a >100-fold reduction in viral load. Bars with hatch marks indicate

an unreliable viral load measurement due to a large reduction in cell viability (see F). Inhibitors were maintained at the same concentration throughout the

experiment (n = 6 biological replicates, error bars indicate SEM).

(F) Percent of A549ACE2 viable cells following inhibitor treatments at 10 mM for 36 hpi determined using LIVE/DEAD stain and flow cytometry. Bars with red hatch

marks indicate that inhibitor treatment had a large impact on viability (<90% viability). Significance testing for (B), (E), and (F) was performed via a one-way ANOVA

with false-discovery rate-corrected follow up tests; for clarity of presentation, all significance testing can be found in Table S6.

See also Figures S3 and S4 and Tables S3 and S4.
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Figure 5. Single-Cell Transcriptomics (EC-

CITE-Seq) Identifies Shared Target Gene

Signatures for Lipid and Cholesterol Regu-

lation

(A) Schematic of pooled CRISPR perturbations

with expanded CRISPR-compatible cellular in-

dexing of transcriptomes and epitopes by

sequencing (ECCITE-seq). Adapted from Mimitou

et al. (2019).

(B) Single-cell mRNA expression heatmap

showing the 100 most differentially upregulated

genes (adjusted p value <0.01) for 200 randomized

cells per selected target gene perturbation (for

clarity, CCDC22, PIK3C3, RAB7, and TMEM165

perturbations are not shown). Labeled genes are

either a top-ranked gene from the genome-wide

CRISPR screens (red) or among the top 5 differ-

entially expressed genes for a gene perturbation

(black).

(C) Heatmap summarizing gene set enrichment

analysis results for genes upregulated in any of the

indicated target gene-perturbed cells (all genes

with p value <0.01 and with a limit to the 300 most

differentially expressed genes; all enriched path-

ways with adjusted p value <10�13).

(D) Cholesterol quantification in gene-perturbed

cells (with the indicated guide RNAs), normalized

to total protein.

See also Figure S5 and Tables S5 and S6.
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expressed genes with a minimal log fold change (see STAR

Methods), implying that loss of these genes results in a detect-

able transcriptomic shift. It is likely that loss of the other 19 genes

results in more subtle changes in only a few genes; however,

even for ‘‘non-perturbed’’ geneswith sufficient basal expression,

we detected clear changes in the CRISPR target gene. We

repeated the ECCITE-seq experiment focusing on the 11 genes

with detectable transcriptomic shifts upon target gene perturba-
tion. Combining both replicate experi-

ments, we obtained 18,853 cells that ex-

pressed only one guide RNA with a

median of 1,388 cells per target gene.

We found that loss of 6 of the ‘‘per-

turbed’’ genes—ATP6AP1, ATP6V1A,

CCDC22, NPC1, PIK3C3, and RAB7A,

which are part of the endosomal entry

pathway—yielded similar gene expres-

sion signatures among upregulated

differentially expressed genes (Figures

5B, 5C, and S5B). These 6 target gene

perturbations all led to upregulation of

pathways affecting lipid and cholesterol

homeostasis (Figure 5C). Recently, we

performed a large survey of >20,000 po-

tential pharmacological treatments for

COVID-19, and for compounds effective

at preventing viral infection, we identified

induction of the cholesterol biosynthesis

pathway as a potential mechanism of

viral inhibition (Hoagland et al., 2020).
Loss-of-function mutations in these 6 genes may function

through a similar mechanism (induction of cholesterol synthesis)

that combats the virus-mediated suppression of cholesterol syn-

thesis. Among the significant differentially expressed genes, we

also found 61 genes from the enriched CRISPR screen genes

(n = 20 genes upregulated; n = 41 genes downregulated) (Table

S5). For example, NPC1, ATP6V1F, and ATP6V1G1 are upregu-

lated in most of the 6 endosomal entry pathway gene-perturbed
Cell 184, 92–105, January 7, 2021 99
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Figure 6. RAB7A Loss Results in a Reduced Cell Surface Expression and an Increased Endosomal Accumulation of ACE2

(A) Representative histograms of flow cytometry analysis to determine cell surface expression of ACE2 on A549 cell lines (A549 wild-type [WT], A549ACE2, and

ACE2 with Cas9 and non-targeting [NT] or RAB7A-targeting guide RNAs). The dashed line indicates the gate between the ACE2-negative and -positive cells.

(legend continued on next page)
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cells (Figure 5C), suggesting compensatory upregulation of

related genes to mitigate target gene loss.

To understand how these changes impact lipid production, we

measured cholesterol levels in cells after CRISPR perturbation

and found that loss of these genes increases cholesterol by be-

tween 10%and 50%, depending on the perturbation (Figure 5D).

To show that increases in cholesterol leads to increased SARS-

CoV-2 resistance, we treated A549ACE2 cells with amlodipine, a

calcium-channel antagonist that increases intracellular choles-

terol (Mori et al., 1988; Ranganathan et al., 1982). We verified

that amlodipine increases cholesterol levels in A549ACE2 cells

(Figure S5C) and found that pre-treatment with amlodipine re-

sults in reduced SARS-CoV-2 viral infection, as measured by

qPCR for nucleocapsid RNA, plaque formation, and number of

viral RNA reads from RNA-sequencing, with only a modest

impact on cell viability (Figures S5D–S5G). RNA-sequencing of

cells treated with amlodipine shows a similar differential gene

expression profile as seen in our ECCITE-seq with CRISPR per-

turbations with the most significant upregulated pathway as

cholesterol biosynthesis (Figures S5H and S5I).

RAB7A Knockout Results in a Reduced Cell Surface
Expression and an Increased Endosomal Accumulation
of ACE2
Next, we sought to determine if any of the top-ranked genes

regulate cell surface expression of ACE2, because surface

ACE2 is required for SARS-CoV-2 infection (Hoffmann et al.,

2020a). Tomeasure the cell surface expression of ACE2, we per-

formed flow cytometry on A549 wild-type cells and a panel of

A549ACE2 CRISPR-perturbed cells. ACE2 expression was de-

tected in A549ACE2, but not in A549 wild-type cells, validating

the antibody specificity (Figures 6A and S6). Flow cytometry

analysis of the A549ACE2 CRISPR-perturbed lines revealed that

RAB7A knockout cells have a significantly reduced cell surface

expression of ACE2 compared to cells transduced with a non-

targeting guide RNA (Figure 6B). Efficient Rab7a protein deple-

tion across the RAB7A CRISPR-perturbed lines used was

confirmed by western blot (Figure S6C).

Rab7a is a small GTPase that is involved in regulating cellular

processes such as vesicular transport and membrane trafficking

(Guerra and Bucci, 2016). We hypothesized that the observed
(B) Fraction of ACE2+ cells (using gating shown in A). ACE2 expression level wa

targeting (NT) guides (n = 2–3 guide RNA-transduced lines per gene, error bars a

(C) Representative images of immunofluorescence staining of ACE2 on A549ACE2

at the cell membrane and in the cytoplasm, while in RAB7A-targeted cells, ACE2

(D) Percent of cells with ACE2 accumulation in vesicles in NT and RAB7A-transd

(E) Representative images of immunofluorescence co-stained for ACE2, EEA1, a

ACE2 shows a distinct colocalization with EEA1 (an early endosome marker) and

(F) Representative histograms of flow cytometry analysis to determine cell surfa

ACE2-negative and -positive cells.

(G) Fraction of ACE2+ cells (using gating shown in F). ACE2 expression level was

(n = 3 biological replicates, error bars are SEM).

(H) Representative images of immunofluorescence staining of ACE2 onCaco-2 ce

at the cell membrane and in the cytoplasm, whereas in RAB7A-targeted cells, A

(I) Mean area of ACE2 foci in Caco-2 cells transduced with a NT or a RAB7A-targ

error bars are SEM). Significance testing for (B) and (G) was performed with a one-

p < 10�4) with false-discovery rate-corrected post hoc tests. Significance testing f

% 0.01, ***p % 0.001, and ****p % 0.0001.

See also Figure S6.
reduction of ACE2 at the cell surface in RAB7A knockout cells

may be due to impaired vesicular trafficking and accumulation

of ACE2 in the cytoplasm. Immunofluorescence in the

A549ACE2 polyclonal cell line revealed that ACE2 is detected in

most cells. We also found that RAB7A knockout leads to an

increased accumulation of ACE2 in the cytoplasm and in

vesicle-like hollow structures reminiscent of endo-lysosomes

(Figure 6C). We detected these accumulations in about 35% of

RAB7A knockout cells with ACE2 staining, compared to the con-

trol where ACE2was primarily localized at the plasmamembrane

and small cytoplasmic puncta (Figure 6D). Finally, we investi-

gated which cellular compartments accumulate ACE2 in

RAB7A knockout cells. Co-immunofluorescence images

showed that in RAB7A knockout cells ACE2-containing vesicles

often colocalize with EEA1, an early endosomal marker and less

frequently with LysoTracker, a lysosome marker (Figure 6E).

Because ACE2 was overexpressed in our A549ACE2 cells, we

wondered whether Rab7a loss would lead to similar cytoplasmic

sequestration in cells with endogenous ACE2 expression. Flow

cytometry analysis in Caco-2 colon and Calu-3 lung cells re-

vealed that RAB7A knockout cells have significantly reduced

cell surface expression of ACE2 compared to cells transduced

with a non-targeting guide RNA (Figures 6F and 6G). We also

found thatRAB7A knockout in Caco-2 cells results in larger cyto-

plasmic ACE2 puncta compared to the control cells, further sup-

porting cytoplasmic accumulation of ACE2 in the absence of

Rab7a (Figures 6H and 6I).

DISCUSSION

Given the current COVID-19 global pandemic, there is an urgent

need to better understand the complex relationships between

host and virus genetic dependencies. We report a genome-

wide loss-of-function screen in human lung cells that identified

host genes required for SARS-CoV-2 viral infection. We selected

and validated 30 genes that were ranked among the top 200

genes. To support the ability of the screen to identify key depen-

dencies, some of the well-known host genes involved in SARS-

CoV-2 Spike protein binding and entry such as the ACE2 recep-

tor and Cathepsin L were among the top-scoring genes (Hoff-

mann et al., 2020a). One of the validated genes (SIGMAR)
s normalized across all samples to the A549ACE2 cells transduced with non-

re SEM).

transduced with an NT or a RAB7A-targeting guide. In NT cells, ACE2 localizes

shows a distinct pattern of localization to vesicles.

uced A549ACE2 cells (n = 2 biological replicates, error bars are SEM).

nd LysoTracker in A549ACE2 cells with a CRISPR guide RNA targeting RAB7A.

a less frequent colocalization with LysoTracker (a lysosomal maker).

ce expression in Calu-3 cells. The dashed line indicates the gate between the

normalized across all samples to the Calu-3 cells transduced with an NT guide

lls transducedwith aNT or a RAB7A-targeting guide. In NT cells, ACE2 localizes

CE2 shows a distinct pattern of localization to vesicles.

eting guide (n = 4 biological replicates, 80–105 cells per replicate were scored,

way ANOVA (B: F = 9.8, p < 10�4; G: Calu-3: F = 378, p < 10�4, Caco-2: F = 222,

or (D) and (I) was performed with an unpaired t test. For all panels, *p% 0.05, **p
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encodes the Sigma-1 receptor that was recently identified to be

modulated by drugs effective against SARS-CoV-2 in vitro (Gor-

don et al., 2020). Overall, the top-ranked genes clustered within

several protein complexes including vacuolar ATPases, Retro-

mer and endosome, Commander, ARP2/3, PI3K, and others,

highlighting both the critical importance of multiple genes within

each pathway to viral pathogenesis and the diversity of molecu-

lar pathways involved in SARS-CoV-2 infection.

Using a ‘‘minipool’’ CRISPR library of perturbations targeting

top-ranked genes from the genome-scale CRISPR screen and

single-cell transcriptomics, we identified a group of 6 genes

(RAB7A, PIK3C3, NPC1, CCDC22, ATP6V1A, and ATP6AP1)

that had a similar transcriptional signature—upregulation of the

cholesterol synthesis pathway. By measuring the cholesterol

levels, we found that CRISPR-driven loss of those 6 genes result

in increased cellular cholesterol. Some of the 6 genes have pre-

viously been implicated in regulating low-density lipoprotein

(LDL) cholesterol. For example, depletion of Rab7a leads to

LDL accumulation in endosomes and NPC1 knockout cells

show a reduction of cholesterol at the plasma membrane and

an accumulation in the late endosome/lysosome compartments

(Chang et al., 2005; Girard et al., 2014; Millard et al., 2000; Neu-

feld et al., 1996). We have recently, in an independent study,

identified that SARS-CoV-2 infection negatively downregulates

the cholesterol synthesis pathway, and viral infection can be

counteracted by drug treatments that upregulate the same

pathway (Hoagland et al., 2020). It is possible that changes in

lipid composition directly impacts SARS-CoV-2 virion matura-

tion and infectivity, as has been previously shown for hepatitis

C and influenza A (Aizaki et al., 2008; Bajimaya et al., 2017). In

this study, we showed that amlodipine, a calcium-channel

antagonist, upregulates cholesterol levels and blocks SARS-

CoV-2 infection. In addition, recent clinical studies have sug-

gested that patients taking amlodipine or similar dihydropyridine

calcium channel inhibitors have a reduced COVID-19 case fatal-

ity rate (Solaimanzadeh, 2020; Zhang et al., 2020). An important

future research direction will be to further understand the rela-

tionship between cholesterol synthesis pathways and SARS-

CoV-2.

Furthermore, we screened a panel of the top-ranked genes

and identified that Rab7a regulates cell surface expression of

ACE2, likely by sequestering ACE2 in endosomal vesicles.

Rab7a is involved in vesicular trafficking and its depletion has

been shown to sequester other cell receptors in endosomes

(Rush and Ceresa, 2013). Interestingly, RAB7A knockout cell

lines showed both altered cholesterol biosynthesis and seques-

tration of ACE2 receptor. Previous proteomics work showed that

Rab7a has a strong interaction with viral protein nsp7 (Gordon

et al., 2020). However, there is no nsp7 in the incoming virion,

implying a post-entry/post-translational role for Rab7a. Thus, it

is possible that loss of Rab7a blocks SARS-CoV-2 pathogenesis

via multiple separate pathways, which is supported by the

observation that it is the top-performing gene in our arrayed

validation.

While this study was under review, a few other groups

released preprints with loss-of-function CRISPR screens to

identify host factors required for SARS-CoV-2 infection (Heaton

et al., 2020; Wei et al., 2020; Zhu et al., 2020). Notably, only two
102 Cell 184, 92–105, January 7, 2021
studies (ours and Zhu et al. [2020]) have substantial overlap (11

and 14 genes among the top 36 genes from our MOI 0.3 and

0.01 screens, respectively, as shown in Figure S1D and nearly

all of the top-ranked gene categories shown in Figure 2A). Given

that these independent screens utilized different CRISPR li-

braries, the corroboration by Zhu et al. (2020) provides further

support for our conclusions. The overlap between either of these

studies with another screen performed using African green mon-

key cells (Wei et al., 2020) was limited to ACE2 and CTSL, two

genes with established roles in viral entry. The differences in

the overlap among the top-ranked genes might be due to tech-

nical aspects (such as different CRISPR libraries or variations

in guide representation) or biological differences (such as

different cell types or different host species). An exciting avenue

for future study would be to investigate if SARS-CoV-2 perhaps

utilizes multiple cell-type-specific genetic circuits.

A key element in our study was harnessing genome-scale

loss-of-function to develop more refined therapeutic hypothe-

sis. Our study suggests that PIK3C3 is a promising drug target:

four out of the seven PIK3C3 inhibitors resulted in more than

100-fold reduction of SARS-CoV-2 viral load (SAR405, Com-

pound-19, PIK-III, and Autophinib). Using a PIK3C3 polyclonal

knockout A549ACE2 cell line, we found that among the top

four PIK3C3 inhibitors, SAR405 may have some off-target ef-

fects (Figure S4B). Considering that our polyclonal knockout

line likely has some residual PIK3C3, future work will be

required to test the inhibitor specificity using a PIK3C3 mono-

clonal knockout cell line. Another drug that shows a substantial

reduction in SARS-CoV-2 viral load is tamoxifen. Tamoxifen is

an FDA-approved drug given as prophylaxis to patients at

risk of breast cancer and works via modulation of the estrogen

receptor. Tamoxifen was included in our study as it targets pro-

tein kinase C as a secondary target (O’Brian et al., 1985). This

mechanism is further supported by the observation that A549

cells have undetectable transcript levels of estrogen receptor

1 (Human Protein Atlas) (Uhlen et al., 2010). Considering that

tamoxifen is typically given to patients for years as a cancer

therapy and prophylactic (Marchant, 1976), it would be inter-

esting to investigate if patients taking tamoxifen have a reduced

risk of SARS-CoV-2 infection and/or display less severe symp-

toms post-infection.

Finally, many approaches for therapeutic discovery have

focused on large-scale screens of compound libraries. Even

when promising therapeutic candidates are identified, it can be

challenging to understand the mechanisms responsible for

reducing viral pathogenesis. Our forward-genetics approach al-

lows us to first identify key host genes, which can then be tar-

geted through a diversity of methods such as small-molecule in-

hibitors, blocking antibodies, or gene knockdown. A key

advantage of this approach is that the mechanism of action for

any therapeutic is well-established from the outset.

Taken together, our integrative study identifies essential host

genes in SARS-CoV-2 viral pathogenesis and, through a broad

range of analytic and experimental approaches, validates their

central role in infection. We also identify potential mechanisms

underlying top-ranked genes, including cholesterol synthesis

and endosomal function. In addition to guiding new therapeutic

targets to help end this pandemic, our study provides a
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framework for harnessing massively parallel genome editing to

understand disease genetics and mechanisms.

Limitations of Study
Our study identified host factors required for SARS-CoV-2 infec-

tion in human A549 cells that overexpress ACE2. Future work will

be needed to explore limitations of our study. (1) Considering the

ACE2 overexpression in our screen, it will be interesting to

screen human cells expressing endogenous ACE2, which may

potentially identify transcriptional regulators of ACE2. (2) The

A549 cell line used in our CRISPR screen is a lung adenocarci-

noma cell line. Given that various organs are affected by

SARS-CoV-2, it will be helpful to understand whether there are

tissue-specific host factors. (3) Although we show through mul-

tiple, distinct genetic perturbations that upregulation of the

cholesterol biosynthesis pathway and increase in cellular

cholesterol blocks SARS-CoV-2, the precise mechanisms of

how changes in cholesterol disrupt viral infection remain to be

elucidated. (4) Recent genome-wide association studies have

uncovered human genetic variants associated with COVID-19

risk and severity. Since the majority of such variants are in non-

coding regions, integrative analysis of genome-wide CRISPR

screensmay help pinpoint the causal genes through which these

variants function.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

SARS-CoV-2 nucleocapsid (N)

antibody (clone 1C7C7)

Center for Therapeutic

Antibody Discovery at the

Icahn School of Medicine

at Mount Sinai

N/A

Mouse anti-2A (clone 3H4) Millipore Cat#MABS2005

Rabbit anti-GAPDH (clone 14C10) Cell Signaling Cat#2118S; RRID: AB_561053

IRDye 680RD donkey anti-rabbit LI-COR Cat#926-68073; RRID: AB_10954442

IRDye 800CW donkey anti-mouse LI-COR Cat#926-32212; RRID: AB_621847

Goat anti-human IgG Alexa Flour 568 Thermo Fisher Scientific Cat#A-21090; RRID: AB_2535746

Goat anti-ACE2 R&D Systems Cat#AF933; RRID: AB_355722

Anti-Goat APC R&D Systems Cat#F0108; RRID: AB_573124

Rabbit anti-EEA1 Thermo Fisher Scientific Cat#MA5-14794; RRID: AB_10985824

Goat anti-Mouse IgG Alexa 488 Jackson Immuno Research Cat#115-545-003; RRID: AB_2338840

Goat anti-Rabbit IgG Alexa 594 Jackson Immuno Research Cat#711-585-152; RRID: AB_2340621

Rabbit anti-RAB7A NovusBio Cat#NBP1-87174; RRID: AB_11004418

Rabbit anti-CCDC22 Proteintech Cat#16636-1-AP; RRID: AB_2072065

Rabbit anti-ATP6V1A Proteintech Cat#17115-1-AP; RRID: AB_2290195

Rabbit anti-ACE2 Thermo Fisher Scientific Cat#MA5-32307; RRID: AB_2809589

Mouse anti-beta tubulin Thermo Fisher Scientific Cat#32-2600; RRID: AB_2533072

Bacterial and Virus Strains

NEB Stable Cells New England Biolabs Cat#C3040I

Chemicals, Peptides, and Recombinant Proteins

Polyethyleneimine Polysciences Cat#23966

Taq B polymerase Enzymatics CAT#P7250L

Q5 High-Fidelity DNA polymerase New England Biolabs Cat#M0491L

PageRuler pre-stained protein ladder Thermo Fisher Scientific Cat#26616

Lipofectamine RNAiMAX Thermo Fisher Scientific Cat#13778075

Serabelisib Selleckchem Cat#S8581

Idelalisib Selleckchem Cat#S2226

Buparlisib Selleckchem Cat#S2247

PIK-III Selleckchem Cat#S7683

Compound 19 (VPS34 inhibitor 1) Selleckchem Cat#S8456

SAR405 Selleckchem Cat#S7682

Autophinib Selleckchem Cat#S8596

Odanacatib Selleckchem Cat#S1115

SID 26681509 MedChemExpress Cat#HY-103353

ALLN Selleckchem Cat#S7386

Sotrastaurin Selleckchem Cat#S2791

Enzastaurin Selleckchem Cat#S1055

Tamoxifen Selleckchem Cat#S1238

Ilomastat Selleckchem Cat#S7157

Doxycycline Hyclate Selleckchem Cat#S4163

GSK6853 MedChemExpress Cat#HY-100220

Olanzapine Selleckchem Cat#S2493

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Binimetinib (MEK162) Selleckchem Cat#S7007

Mirdametinib Selleckchem Cat#S1036

Gentamicin Selleckchem Cat#S4030

Vorinostat Selleckchem Cat#S1047

Belinostat Selleckchem Cat#S1085

Panobinostat Selleckchem Cat#S1030

Pracinostat Selleckchem Cat#S1515

BRD4354 MedChemExpress Cat#HY-112719

TMP195 Selleckchem Cat#S8502

Remdesivir Biovision Cat#B2997-1000

Amlodipine Sigma Cat#A5605

Critical Commercial Assays

Pierce BCA protein assay kit Thermo Fisher Scientific Cat#23225

Trypan Blue Thermo Fisher Scientific Cat#15250061

LysoTracker DeepRed Thermo Fisher Scientific Cat#L12492

Cholesterol-Glo assay Promega Cat#J3190

TruSeq Stranded mRNA Library Prep Kit Illumina Cat#20040534

10x Genomics 50 kit (Chromium Single Cell Immune

Profiling Solution v1.0)

10x Genomics Cat #1000014,

#1000020, #1000151

LIVE/DEAD Fixable Violet Dead Stain Kit Thermo Fisher Scientific Cat#L34864

KAPA SYBR FAST One-step Universal qRT-PCR Kit Roche Cat#KK4652

SYBR Fast qPCR (KAPA) Roche Cat#KK4602

SuperScript Reverse Transcriptase II Thermo Fisher Scientific Cat#18064022

Deposited Data

GeCKOv2 CRISPR Screen in A549-ACE2 infected with

SARS-CoV-2

This study GEO accession: GSE158298

scRNA seq of A549-ACE CRISPR preturbed cells This study GEO accession: GSE159519

RNA seq of DMSO or Amplodipine treated A549-

ACE2 cells

This study GEO accession: GSE159522

Experimental Models: Cell Lines

HEK293FT Thermo Fisher Scientific Cat#R70007

Caco-2 ATCC Cat#HTB-37

Vero E6 ATCC Cat#CRL-1586

Calu-3 ATCC Cat#HTB-55

A549-ACE2 this study N/A

Huh7.5-ACE2 Daniloski et al., 2020 N/A

Oligonucleotides

SARS-2 qPCR N mRNA forward: 50-
CTCTTGTAGATCTGTTCTCTAAACGAAC-30

This study N/A

SARS-2 qPCR N mRNA reverse: 50-
GGTCCACCAAACGTAATGCG-30

This study N/A

Beta Tubulin forward: 50-
GCCTGGACCACAAGTTTGAC-3

This study N/A

Beta Tubulin reverse: 50-
TGAAATTCTGGGAGCATGAC-30

This study N/A

Recombinant DNA

pHR-PGK-hACE This study Addgene 161612

pCV-EF1a-hACE2-hygro Daniloski et al., 2020 Addgene 161758

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pCC_01 - lenti-hU6-sgRNA(F+E)-EFS-Cas9-

NLS2A-Puro

Legut et al., 2020 Addgene 139086

GeCKOv2 A and B libraries Sanjana et al., 2014 Addgene 1000000048

pMD2.G Trono Lab Packaging and

Envelope Plasmids

Addgene 12259

psPAX2 Trono Lab Packaging and

Envelope Plasmids

Addgene 12260

Software and Algorithms

MaGeCK pipeline was used for the analysis of the

CRISPR screen

Chen et al., 2018 N/A

FlowJo v10 BD Biosciences N/A

GraphPad Prism 8 GraphPad N/A

Cellranger v3.0.1 10x Genomics N/A

Seurat R package v3.2 Stuart et al., 2019 N/A

DESeq2 Love et al., 2014 N/A

STRING tool Szklarczyk et al., 2019 N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Neville

Sanjana (neville@sanjanalab.org).

Materials Availability
The pHR-PGK-ACE2 vector generated in this study is available through Addgene (161612).

Data and Code Availability
CRISPR screen, single cell RNA-sequencing/ECCITE-seq and bulk RNA-sequencing datasets are available on the GEO repository

with accession numbers GSE158298, GSE159519 and GSE159522, respectively.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mammalian cell lines and culture conditions
Human alveolar basal epithelial carcinoma cells (A549, ATCCCCL-185), human hepatocellular carcinoma (Huh7.5, a kind gift fromC.

Rice), human colorectal carcinoma (Caco-2, ATCCHTB-37), lung adenocarcinoma (Calu-3, ATCCHTB-55), monkey kidney epithelial

cells (Vero E6, ATCCCRL-1586) and human embryonic kidney cells HEK293FT (Thermo) were used in our study. HEK293FT, Huh7.5,

and Caco-2 cells were maintained at 37�C and 5%CO2 in D10media, which consists of DMEM (Caisson Labs) with 10%Serum Plus

II Medium Supplement (Sigma-Aldrich). Calu-3 and Vero E6 cells were maintained in EMEM (ATCC) media with 10% Serum Plus II

Medium Supplement (Sigma-Aldrich) .

Viral strains
SARS-related coronavirus 2 (SARS-CoV-2), isolate USA-WA1/2020 (NR-52281), used in the study (Blanco-Melo et al., 2020; Dani-

loski et al., 2020). SARS-CoV-2 was grown in Vero E6 cells in DMEM supplemented with 2% FBS, 4.5 g/L D-glucose, 4 mM L-gluta-

mine, 10 mM non-essential amino acids, 1 mM sodium pyruvate and 10 mM HEPES. Plaque assays were used to determine infec-

tious titers of SARS-CoV-2 by infection of Vero E6 cells in Minimum Essential Media supplemented with 2% FBS, 4 mM L-glutamine,

0.2% BSA, 10 mM HEPES and 0.12% NaHCO3 and 0.7% agar.

METHOD DETAILS

Generation of A549ACE2 line
To generate ACE2 expressing cells, the human ACE2 coding sequence was amplified and cloned into the BamHI site of the lentiviral

vector pHR-PGK (Addgene 79120). We generated lentiviral particles (as described below) and transduced 5x104 A549 cells plated in
e3 Cell 184, 92–105.e1–e8, January 7, 2021
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a 12-well plate in the presence of polybrene (8 mg/ml). We confirmed hACE2 expression by western blot analysis (Thermo

MA5-32307).

Lentiviral production, transduction and SARS-CoV-2 infection
The Human GeCKOv2 A and B libraries (Addgene 1000000048) were used for genome-scale CRISPR knockout screens (Sanjana

et al., 2014). We mixed equal amount of the A and B library plasmids to target each gene with 6 guide RNAs. Briefly, 225cm2 flasks

of 80% confluent HEK293FT cells (Thermo) were transfected with 25 mg GeCKOv2 plasmid, 14 mg pMD2.G and 20 mg psPAX2mixed

in 2.5 mL OptiMEM (Thermo) and 175 mL Polyethylenimine (1 mg/ml) (Polysciences). After 6 hours, media was changed to D10media

with 1% bovine serum albumin (Sigma) added to improve virus stability. After 60 hours, viral supernatants were harvested and centri-

fuged at 3,000 rpm at 4�C for 10 min to pellet cell debris debris and filtered using 45 mmPVDF filters (CellTreat). The supernatant was

then ultracentrifuged for 2 hours at 100,000 g (Sorvall Lynx 6000) and the pellet resuspended overnight at 4�C in PBS with 1% BSA.

Following lentiviral titration, 330 million A549ACE2 expressing cells were transduced at MOI of 0.5. Cells were selected with 2 mg/uL

puromycin (Thermo) for 12 days to ensure proper selection. Throughout the experiment the representation was monitored such that

each guide RNA is represented by at least 1000 cells (�125 M cells).

We infected GeCKOv2-transduced cells (�1000x representation) with SARS-CoV-2 isolate USA-WA1/2020 (NR-52281) at either

MOI of 0.01 (low MOI) and 0.3 (high MOI). Surviving cells were collected on day 6 post-infection for genomic DNA isolation.

Genomic DNA isolation, guide RNA amplification and quantification
We used a two-step PCR protocol (PCR1 and PCR2) to amplify the guide RNA cassette for Illumina sequencing from genomic DNA

(gDNA). The gDNA was extracted from CRISPR screen cells using the following protocol (Chen et al., 2015): Per 100 million cells,

12 mL of NK Lysis Buffer (50 mM Tris, 50 mM EDTA, 1% SDS, pH 8) were used for cell lysis. Once cells were resuspended, 60 mL

of 20 mg/ml Proteinase K (QIAGEN) was added and the sample was incubated at 55�C overnight. The next day, 60 mL of 20 mg/

mLRNase A (QIAGEN)was added,mixed, and samples were incubated at 37�C for 30min. Then 4mL of pre-chilled 7.5M ammonium

acetate was added, samples were vortexed and spun at 4,000 g for 10 min. The supernatant was placed in a new tube, mixed well

with 12 mL isopropanol and spun at 4,000 g for 10 min. DNA pellets were washed with 12 mL of 70% ethanol, spun, dried and pellets

were resuspended with 0.2x TE buffer (Sigma).

For the first PCR reaction, we used all gDNA available for each sample. We performed the PCR1 using Taq-B polymerase (Enzy-

matics) and used multiple reactions where each reaction contained up to 10 mg gDNA per 100 mL PCR reaction. PCR1 products for

each sample were pooled and used for amplification with barcoded PCR2 primers. For each sample, we performed 12 PCR2 reac-

tions (using 5 mL of the pooled PCR1 product per PCR2 reaction) with Q5 polymerase (NEB). PCR2 products were pooled and then

normalized within each biological sample before combining uniquely-barcoded separate biological samples. The pooled product

was then gel-purified from a 2% E-gel EX (Life Technologies) using the QiaQuick gel extraction kit (QIAGEN). The purified, pooled

library was then quantifiedwith Tapestation 4200 (Agilent Technologies). PCR products were run on a 2%agarose gel and the correct

size band was extracted. Sequencing was performed on the NextSeq 550 instrument using the HighOutput Mode v2 with 75 bp

paired-end reads (Illumina). For PCR1 the following primer set was used: 50 GAGGGCCTATTTCCCATGATTC 30 and 50

GTTGCGAAAAAGAACGTTCACGG 30. For PCR2 the following primers were used: 50 AATGATACGGCGACCACCGAGATCTA

CACTCTTTCCCTACACGACGCTCTTCCGATCT (N1-9) (BC8) TCTTGTGGAAAGGACGAAACACCG 30 and 50 CAAGCAGAAGACGG

CATACGAGAT (BC8) GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (N1-9) TCTACTATTCTTTCCCCTGCACTGT 30, where N

is a stagger of 1 to 9 nucleotides and BC is a barcode of 6 nucleotides.

Sequencing reads were demultiplexed upon sequencing based on Illumina i7 barcodes present in PCR2 reverse primers using Il-

lumina BaseSpace.We performed adaptor trimming by treating the hU6 promoter sequence as a 50 adaptor, using cutadapt v1.13 [-e

0.2 -O 5 -m 20 -g TCTTGTGGAAAGGACGAAACACCG]. Processed guide RNA sequences were aligned to the GeCKOv2 reference

allowing for up to 1 mismatch using bowtie v1.1.2 [-a–best–strata -v 1 –norc] with alignment rates of 81% to 86%.

Computational analyses of genome-scale CRISPR screens
GuideRNA counts were processed using theMaGeCKpipeline with an output of RRA p-values and gene ranks (Chen et al., 2018).We

separately ranked genes using the RIGER (weighted-sum) and second-best rank methods (Chen et al., 2015; Luo et al., 2008). Gene

Set Enrichment Analyses were performed using the fgsea package with Gene Ontology for biological processes (c5.bp.v7.1.sym-

bols) (Korotkevich et al., 2019). GTEx v8 tissue specific enrichment was performed using the Multi Gene Query function available

on the GTEx website: https://www.gtexportal.org/home/multiGeneQueryPage (accessed August 1st, 2020) (Aguet et al., 2019).

GO enrichments for SARS-CoV-2, ZIKV, and IAV CRISPR screens were performed using GOrilla to find all significant enrichments

(FDR p-value < 10-3) (Eden et al., 2009). FDR p-values were log10-transformed and normalized to create the heatmap shown in

Figure 3E.

Generation of gene-perturbed human cell lines and SARS-CoV-2 infection
For validation byCRISPR knock-out (using 3 independent guide RNAs per gene), we selected genes that were highly-ranked (either in

the low or high MOI screen or both) or genes that had not previously been implicated in viral pathogenesis or immune signaling. For

each gene of interest, 3 guide RNAs were designed using GUIDES software and were subsequently cloned into an all-in-one vector
Cell 184, 92–105.e1–e8, January 7, 2021 e4
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with an optimized Cas9 scaffold (pCC_01, Addgene 139086) containing Cas9, a guide RNA cassette and a puro resistant cassette

(Legut et al., 2020; Meier et al., 2017). Following sequence confirmation by Sanger sequencing, lentivirus was produced individually

for each plasmid and the target cells were transduced in presence of polybrene (10 mg/mL, Santa Cruz). Gene-perturbed A549ACE2,

Huh7.5ACE2, Calu-3 andCaco-2 cells were selected for at least 10 dayswith 2 mg/mL (A549ACE2, Calu-3), 3 mg/mL (Caco-2) or 5 mg/mL

(Huh7.5ACE2) puromycin (Thermo). To determine the SARS-CoV-2 infection susceptibility of gene-perturbed lines, 10,000 cells were

plated perwell of 96-well plates. After 24 hours, the cells were infectedwith SARS-CoV-2 atMOI of 0.1. At 36 hours post-infection, the

cells were either fixed and processed for immunofluorescence or cellular RNA was harvested for qRT-PCR analyses. For the multi-

step growth curves, cells were infected at anMOI of 0.1, and total RNAwas harvested from infected cells at indicated times. RNAwas

processed for qRT-PCR as described above. All infections with SARS-CoV-2 were performed with at least 3 biological replicates.

Immunofluorescence of nucleocapsid (N) protein
Cells were fixed with 5% formaldehyde and immunostained for nucleocapsid (N) protein and visualized with a secondary antibody

labeled with AlexaFlour-568 (Thermo). SARS-CoV-2 nucleocapsid (N) antibody (clone 1C7C7) was obtained from the Center for Ther-

apeutic Antibody Discovery at the Icahn School of Medicine at Mount Sinai. Nuclei were stained with DAPI. Full wells were imaged

and quantified for SARS-CoV-2 infected cells using a Celigo imaging cytometer (Nexcelom Biosciences). All infections with SARS-

CoV-2 were performed with 3 biological replicates. Representative images from the top gene knockout hits were acquired using the

EVOS M5000 Imaging System (Thermo).

Identification of druggable genes and drug treatments
To identify druggable genes among the top CRISPR screen hits, we cross-referenced highly-ranked genes from the RRA analysis

with the data table containing drugs and their gene targets was obtained from Drug Gene Interaction database (DGIdb, retrieved

on June 3, 2020) as well as manual literature search (Cotto et al., 2018). Inhibitors that target the genes of interest (and remdesivir)

was obtained from SelleckChem and MedChemExpress. The catalog number and vendor information is available in the Key

Resource section. Amlodipine was obtained from Sigma (A5605).

To test drug efficacy in reducing SARS-CoV-2 infection, 10,000 A549ACE2 cells were seeded per well of a 96-well plate. Cells were

treated with inhibitors at 10 mM for two hours before infection and inhibitors weremaintained throughout the course of infection. Cells

were infected with SARS-CoV-2 at MOI of 0.1 for 36 hours and the cells were collected for analysis via qRT-PCR or processed for

immunofluorescence (N protein and quantified by Celigo). For Figure 4E, the remdesivir data was collected in an independent

experiment.

Cell viability assays
Cell viability following drug treatments was performed the same way as described above. Thirty-six hours post drug treatment the

cells were collected and stained with LIVE-DEAD Violet (Thermo). Cell acquisition was performed using a Sony SH800S cell sorter

with a 100 mm sorting chip. We used the following gating strategy: 1) We excluded the cell debris based on the forward and reverse

scatter; 2) Doublets were excluded by plotting FSC height versus FCS area, 3) Dead cells were quantified using live-dead violet stain.

For all samples, we recorded at least 5,000 cells that pass the gating criteria described above. Flow cytometry analyses were per-

formed using FlowJo v10. Cell viability for A549-ACE2 treated with DMSO or 10mM amlodipine was performed 24 hours post treat-

ment using Trypan Blue (Thermo Fisher) and automated cell counting (Nexcelom AutoT4).

Quantitative reverse-transcription PCR (qRT-PCR) of viral RNA
RNAwas extracted from cells grown in 96-well plates by using the RNeasy 96 Kit (QIAGEN) per the manufacturer’s instructions. RNA

was reverse-transcribed and PCR amplified using SYBR Fast One-step Universal qRT-PCR Kit (KAPA/Roche). For amlodipine ex-

periments, RNA was extracted using TRIzol Reagent (Invitrogen) and purified with the Direct-zol RNA Miniprep kit (Zymo Research)

as per the manufacturer’s instructions (including the optional DNase I treatment). For amlodipine experiments, the RNAwas reverse-

transcribed using SuperScript Reverse Transcriptase II (Thermo Fisher) and oligo(dT) primers. The cDNA was diluted 1:20 before

qRT-PCR was performed using SYBR Fast qPCR (KAPA/Roche). SARS-CoV-2 replication was assessed by using primers specific

to theNmRNA (Forward 50-CTCTTGTAGATCTGTTCTCTAAACGAAC-30; Reverse 50-GGTCCACCAAACGTAATGCG-30). SARS-CoV-
2 N mRNA levels were normalized to beta tubulin (Forward 50-GCCTGGACCACAAGTTTGAC-3; Reverse 50-TGAAATTCTGGGAG-

CATGAC-30). Reactions were ran and analyzed on a Lightcycler 480 II Instrument (Roche). Relative quantification was calculated

by comparing the cycle threshold (Ct) values using DDCt. Ct values of subgenomic nucleocapsid transcript were normalized to Ct

values of alpha-tubulin, and those values were normalized to viral transcript levels of DMSO-treated or non-targeting guide RNA-

transduced control samples, and displayed as fold-reduction in viral transcript. Significance was determined using a one-way

ANOVA with post hoc tests or a two-tailed unpaired Student’s t test, as appropriate.

siRNA transfections and SARS-CoV-2 infection
All of the siRNAs were ordered from Dharmacon and their catalog number can be found in the Key Resources Table. To knockdown

individual genes, 10,000 A549ACE2 cells were seeded in 96-well plates and transfected with siRNAs using Lipofectamine RNAiMAX

(Thermo) following the manufacturer’s protocol. Forty-eight hours later, the cells were infected with SARS-CoV-2 at anMOI of 0.1 for
e5 Cell 184, 92–105.e1–e8, January 7, 2021
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36 hours. Cells were fixedwith 5% formaldehyde, stainedwith nucleocapsid protein (clone 1C7C7, ISMMS), and visualizedwith Alex-

aFluor-568 conjugated secondary antibody (Thermo). Nuclei were stained with DAPI, and full wells were imaged with a Celigo imag-

ing cytometer (Nexcelom Biosciences).

Minipool CRISPR library and lentiviral production
To generate the minipool, we combined equimolar amounts the same guide RNA vectors (cloned in pCC1) that we used for arrayed

validation (see aboveGeneration of gene-perturbed A549ACE2 lines and SARS-CoV-2 infection). In total, we combined 3 guide RNAs

for each gene (either, 30 or 11 genes) plus 9 non-targeting guide RNAs. The non-targeting guide RNA plasmids were added at half the

molar ratio of the other plasmids. Lentivirus was produced via transfection of the minipool with appropriate packaging plasmids

(psPAX2: Addgene 12260; pMD2.G: Addgene 12259) using polyethylenimine (PEI) reagent in HEK293FT. The target A549ACE2 cells

were transduced in presence of polybrene (10 mg/mL, Santa Cruz) (ECCITE-Seq experiment 1) or without (ECCITE-seq experiment 2)

at very lowMOI to ensure entry of a single virus per cell. The survival was below 5% after 2 days of selection with 2 mg/mL puromycin

(Thermo) for both ECCITE-seq experiments. On day 10 post-transduction, the cells were collected and processed for ECCITE-seq.

Expanded CRISPR-compatible Cellular Indexing of Transcriptomes and Epitopes (ECCITE-seq)
To perform cell-hashing and ECCITE-seq (Mimitou et al., 2019; Stoeckius et al., 2018), we separated cells into several sub-pools and,

for each pool, we resuspended 1 million cells in 100 ml staining buffer (2% BSA, 0.01% Tween in PBS). We then added 10 ml Human

TruStain FcX Fc Receptor Blocking Solution (BioLegend) and incubated on ice for 10 minutes. We then added hashing antibodies

(BioLegend), incubated on ice for 30 minutes, and washed cells 3 times with staining buffer. In total, we ran four lanes of a Chromium

Single Cell Immune Profiling Solution v1.0 50 kit (10x Genomics) targeting recovery of 12,000 cells per lane (superloading) in exper-

iment 1 and 20,000 cells in experiment 2. Gene expression (mRNA), hashtags (Hashtag-derived oligos, HTOs) and guide RNA (Guide-

derived oligos, GDOs) libraries were constructed (Smibert et al., 2019). Each replicate was sequenced on two NextSeq550 75-cycle

high-output runs (Illumina). Sequencing reads from the mRNA library were mapped to the hg38 reference genome (Ensembl v97) us-

ing Cellranger (v3.0.1, 10x Genomics). To generate count matrices for HTO and GDO libraries, the CITE-seq-count package was

used (https://github.com/Hoohm/CITE-seq-Count v1.4.2). Count matrices were then used as input into the Seurat R package

(v3.2) for downstream analyses (Stuart et al., 2019).

ECCITE-seq data analysis
Processing of initial ECCITE-seq experiment with 30 target genes

Cells with low quality metrics, highmitochondrial gene content (> 17.5%) and low number of genes detected (%1800) were removed.

The median number of detected genes was 3309. RNA counts were log-normalized and HTO counts were normalized using the

centered log-ratio transformation approach, with margin = 2 (normalizing across cells). To identify cell doublets and assign experi-

mental conditions to cells, we used the HTOseqDemux function (Stoeckius et al., 2018). HTOseqDemux-defined cell doublets and

negatives were removed from any downstream analyses.

Cellular guide RNA identity for cells in the ECCITE-seq pool was assigned based on GDO unique molecular identifier (UMI) counts.

We considered a guide RNA detected with R 16 UMI counts (the median UMI counts per guide RNA was 503 counts, 93% of cells

withR 1 sgRNA).We observed that 64%of the cells had > 1 detected guide RNA (29%1guide RNA, 27%2guide RNAs, 17%3guide

RNAs). To maximize cell recovery, we retained cells with 1 - 3 guide RNAs per cell (n = 10,265). We collapsed the guide RNA infor-

mation down to target gene level (3 guide RNA per target gene) in the following way: For all cells (with 1-3 guide RNAs), we assigned a

unique target gene if all detected guide RNAs targeted the same gene, or if the additional guide RNA detected was a non-targeting

(NT) guide RNA (4,715 cells: 4,013 cells with exactly 1 sgRNA and 702 cells with collapsed target gene assignment). All remaining

cells assigned 2 or 3 separate target genes were discarded.

Some of the top-ranked genes from the CRISPR screens may be endpoint genes and thus may have subtle phenotypes difficult to

detect using single-cell transcriptomics. To address this issue, we used the initial ECCITE-seq experiment (n = 4,715 cells) and

grouped cells by target gene. To identify target gene perturbations that lead to systemic transcriptomic changes, we determined

the number of differentially expressed genes relative to cells with NT guide RNAs. We found that under stringent filtering conditions

(non-adjusted p-value < 10�5 or adjusted p-value < 0.2), only 11 target genes showedmore than 5 differentially expressed genes. The

second ECCITE-seq experiment was conducted using guide RNAs solely for these.

Joint processing of both ECCITE-seq experiments

Cells with low quality metrics, high mitochondrial gene content (> 15%) and low or high number of genes detected (%2000 and >

5000) were removed. The median number of detected genes was 3365, with a median of 13,532 UMIs per cell. HTO counts were

normalized using the centered log-ratio transformation approach, with margin = 2 (normalizing across cells). To identify cell doublets

and assign experimental conditions to cells, we used the HTOseqDemux function (Stoeckius et al., 2018). HTOseqDemux-defined

cell doublets and negatives were removed from any downstream analyses. Guide RNA counts were normalized similar to HTO UMI

counts. Cell-wise guide RNA assignment was achieved using the MultiSeqDemux function (McGinnis et al., 2019). We only retained

cells assigned with a single HTO and a single guide RNA (ECCITE-seq experiment 1: n = 1,824 cells, ECCITE-seq experiment 2: n =
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17,029 cells). Cells from ECCITE-Seq experiment 1 and experiment 2 were harmonized by log-normalizing, followed by the identi-

fication of the 2000 most variable features with ‘‘vst’’ selection method. Next, we we used FindIntegrationAnchors and IntegrateData

with the first 40 principle components.

In the harmonized dataset (n = 18,853 cells), we used FindMarkers to find differentially expressed genes between non-targeting

cells and cells that belonged to a targeted gene class. We used up to 100 of the most upregulated genes with adjusted p-value <

0.01 and minimal logeFC threshold > 0.1 filter as input into the heatmap in Figure 5B. The same FindMarkers analysis (but using

the non-adjusted p-value < 0.01 with a maximum of the 300 most significant DEGs) was used as input into the EnrichR package

to run pathway analysis using the human WikiPathways database (v. 2019) (Kuleshov et al., 2016; Slenter et al., 2018). Figure 5C

shows -log10 transformed p-values for the union of all enriched pathways with an adjusted p-value < 0.01 across the 11 target genes

with perturbation signatures.

Plaque assay
Infectious titer in supernatant of SARS-CoV-2 infections (fromA549ACE2) was determined by plaque assay in Vero E6 cells. Cells were

seeded in 12-well plates before infection with logarithmically diluted supernatants in a total inoculum of 100 ul, rocking plates every

10 minutes for 1 hour. Then an overlay of Minimum Essential Media with 0.12% NaHCO3, 4 mM L-glutamine, 0.2% BSA, 10 mM

HEPES and 0.7% OXOID agar (Thermo) was aliquoted into wells and plates were incubated for 48 hours before fixing with 5% form-

aldehyde. After 24 hours, plaques were stained with crystal violet (1% crystal violet in 20%EtOH) for 15minutes before washing wells

and counting plaques.

Bulk RNA-sequencing
RNA-sequencing libraries were constructed from 1ug of RNA per sample using the TruSeq StrandedmRNA Library Prep Kit (Illumina)

according to themanufacturer’s instructions. Sequencing libraries were sequenced using an IlluminaNextSeq 500 platform and fastq

files were generated using bcl2fastq (Illumina). Alignment to the SARS-CoV-2 genome (GenBank: MN985325.1) were performed us-

ing bowtie (Langmead et al., 2009). Readswere aligned to hg19 using STAR aligner in the Basespace RNA-Seq Alignment application

(Illumina) and processed using DESeq2 (Love et al., 2014). Sample distances were calculated using read counts from the regularized

log transform in DESeq2. K-means clustering was perfomed using the kmeans function in R/RStudio. Enriched Reactome pathways

were identified using the STRING tool (Szklarczyk et al., 2019).

Measurement of cellular cholesterol
Cellular cholesterol was measured using the Cholesterol-Glo assay (Promega). For each cell line (CRISPR-perturbed or drug-

treated), we counted 100,000 cells, washed with 1xPBS twice and resuspended in 100 mL cell lysis solution for 30 min at 37�C.
Following the incubation, 10 mL of cell lysate was used to measure the cholesterol levels in 96 well plates in a final reaction volume

of 100uL per well (without esterase). Luminescence was measured after incubating the plate for 1 hour at room temperature in the

dark. Using the same lysis sample, the protein concentration was determined using the BCA assay (Thermo). The cholesterol levels

were normalized to the respective protein concentration of each sample. A549ACE cells were incubated with 10 mM amlodipine

(Sigma) or DMSO for 24 hours. Cholesterol levels were then determined as described above.

Flow cytometry of ACE2 cell surface expression
Cells were harvested, counted and about 100,000 cells were washed with Dulbecco’s phosphate-buffered saline (PBS, Caisson

Labs) and then stained with LIVE/DEAD Violet stain (Thermo, 34864). Following a wash with 1x PBS, all subsequent washes and anti-

body dilutions were performed using 1x PBS supplemented with 2% FBS.Wild-type or Cas9-perturbed A549ACE2, Caco-2 and Calu-

3 cells were stained for 30min on ice with 0.25 mg of anti-ACE2 antibody (R&D Systems, AF933) in�50 mL residual volume. Following

twowasheswith 1x PBSwith 2%FBS, samples were stained on ice for 20min with 7.5 mL of anti-goat-APC secondary antibody (R&D

Systems, F0108). Cell acquisition and sorting was performed using a Sony SH800S cell sorter with a 100 mm sorting chip. We used

the following gating strategy: 1) We excluded the cell debris based on the forward and reverse scatter; 2) Doublets were excluded by

plotting FSC height versus FCS area, 3) Dead cells were excluded by live-dead stain. We recorded at least 5,000 cells for A549ACE2

and at least 3,000 cells for Calu-3 and Caco-2 that pass the gating criteria described above. Gates to determine ACE2-APC+ cells

were set based on control A549 wild-type cells or only secondary antibody stained Calu-3 and Caco-2, where the percent of ACE2

positive cells was set as < 5% (background level). Flow cytometry analyses were performed using FlowJo v10.

Immunofluorescence of ACE2 and endo/lysosomal markers
A549ACE2 Cas9-transduced (specific gene or non-targeting) cell lines were seeded on poly-D-lysine-coated coverslips (Electron Mi-

croscopy Sciences) 24 hours before they were fixed with 4% formaldehyde (Sigma) diluted in 1x PBS (Caisson Labs) (Daniloski et al.,

2020). Following 3 washes with 1x PBS, cells were blocked with 1x PBS with 2% BSA for 30 min at room temperature. Cells were

stained with mouse anti-2A antibody diluted at 1:250 (clone 3H4, Millipore Sigma, MABS2005) to recognize ACE2-2A, and rabbit

anti-EEA1 diluted at 1:100 (Thermo, MA5-14794). To detect ACE2 in Caco-2 cells, goat anti-ACE2 (R&D Systems, AF933) was

used at 1.25 mg/mL. Cell were incubated with primary antibodies for 3 hours at room temperature in a moisturized chamber. Cover-

slips were then washed 5 times with 1x PBSwith 2%BSA and then incubated with Alexa-conjugated secondary antibodies (Jackson
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ImmunoResearch) diluted at 1:1000 for 45 min at room temperature. Coverslips were then washed 5 times with 1x PBSwith 2%BSA,

and DAPI (Sigma) was added in the fourth wash at a concentration of 0.1 mg/mL. To stain the lysosomes, LysoTracker DeepRed

(Thermo) was diluted to 70 nM in culture media and was added to actively growing cells on coverslips and were incubated for 1

hour at 37�C. Following incubation with LysoTracker, cells were processed for immunofluorescence as described above. Confocal

imageswere acquired on a Zeiss LSM780with a 20x/0.8 Plan-Apochromat objective or a 63x/1.4 Plan-Apochromat objective (Zeiss).

Epifluorescence images were acquired using the same system; both fitted with a Zeiss Axiocam 506mono (Zeiss). Images were pro-

cessed using Zen Black 2012 (Zeiss) and FIJI 2.1.0; Java 1.8.0-202 (Schindelin et al., 2012). Linear histogram adjustments were

applied uniformly within experiments for clarity of presentation.

ACE2 localization was determined on images taken on a Zeiss LSM780with a 20x/0.8 Plan-Apochromat objective using Zen Black

(Zeiss). The A549ACE2 polyclonal cell line had both ACE2 positive and negative cells. Only ACE2 positive cells were then manually

scored if they had a distinct accumulation of cytoplasmic vesicles-like hollow structures, compared to the non-targeting (NT) control.

In theNT control, the ACE2 stainingwas seen on the plasmamembrane and diffuse in the cytoplasm. The scoringwas performed on 2

biological replicates (that is, two separate non-targeting controls and two separate Rab7A knockout lines engineered using 4 sepa-

rate Cas9 guide RNAs). We scored �430 cells per replicate. To quantify the size of ACE2 foci, confocal microscopy images were

thresholded using FIJI’s local-threshold (Phansalkar radius = 15) and then a watershed transform was applied. Foci were counted

and measured using FIJI’s Analyze Particles function.

Western blots
A549ACE2 or Huh7.5ACE2 cells were collected, washed with 1x PBS and lysed with TNE buffer (10 mMTris-HCl, pH 7.4, 150mMNaCl,

1mM EDTA, 1% Nonidet P-40) in presence of protease inhibitor cocktail (Bimake B14001) for 1 hour on ice. Cells lysates were spun

for 10 min at 10,000 g, and protein concentration was determined with the BCA assay (Thermo). Equal amounts of cell lysates (20 mg)

were denatured in Tris-Glycine SDS Sample buffer (Thermo LC2676), and loaded on a Novex 4 - 20% Tris-Glycine gel (Thermo

XP04205BOX). PageRuler pre-stained protein ladder (Thermo 26616) was used to determine the protein size. The gel was run in

1x Tris-Glycine-SDS buffer (IBI Scientific IBI01160) for about 120 min at 120V. Proteins were transferred on a nitrocellulose mem-

brane (BioRad 1620112) in presence of prechilled 1x Tris-Glycine transfer buffer (FisherSci LC3675) supplemented with 20% meth-

anol for 100min at 100V. Immunoblots were blockedwith 5%skimmilk dissolved in 1x PBSwith 1%Tween-20 (PBST) and incubated

overnight at 4�Cseparately with the following primary antibodies: rabbit anti-RAB7A (0.1 mg/mL, NovusBio, NBP1-87174), rabbit anti-

GAPDH (0.1 mg/mL, Cell Signaling, 2118S), rabbit anti-CCDC22 (0.34 mg/mL, Proteintech, 16636-1-AP), rabbit anti-ATP6V1A

(0.46 mg/mL, Proteintech, 17115-1-AP), rabbit anti-ACE2 (0.5 mg/mL, Invitrogen, MA5-32307), and mouse anti-beta tubulin

(0.5 mg/mL, Invitrogen, 32-2600). Following the primary antibody, the blots were incubated with IRDye 680RD donkey anti-rabbit

(0.2 mg/mL, LI-COR 926-68073) or with IRDye 800CW donkey anti-mouse (0.2 mg/mL, LI-COR 926-32212). The blots were imaged

using Odyssey CLx (LI-COR).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Statistical parameters and details are reported in each figure legend. Generally, experiments were repeated with at least three bio-

logical replicates. Each plot includes points for individual biological replicates and mean ± s.e.m. error bars unless otherwise spec-

ified. In general, biological replicates consist of replicate viral transductions (CRISPR), replicate RNA transfections (siRNA), or repli-

cate drug treatments (small molecule inhibitors) and are specified in each figure legend. For imaging experiments, the number of cells

scored per biological replicate is given in the figure legend.

When assessing significance of genetic perturbations and/or inhibitor treatments, we employed first a one-way or two-way ANOVA

to assess significance and, when significant, post hoc comparisons were performed using the false-discovery rate method of Ben-

jamini-Krieger-Yekutieli to correct for multiple comparisons. Before applying ANOVA, we first verified the equality of group variances

using the Brown-Forsythe test. Details for all ANOVA and post hocmultiple comparisons are reported in Table S6; t tests are reported

in the respective figure legends.

Throughout the manuscript, we use r to denote the Pearson correlation and rs to denote the Spearman correlation; all reported

correlations were significant using the cor.test function in R. For the BioID interactome analysis, we derived an empirical p value

by resampling from a null distribution (n = 10,000 gene shuffling iterations). Statistical analyses were performed in GraphPad Prism

8 and RStudio 1.2.5019.
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Supplemental Figures

Figure S1. Genome-wide Loss-of-Function CRISPR Screen Enriched Gene Identification, Related to Figure 1

(A) Scatterplot of guide RNA read counts from A549ACE2 cells at 3 days post-transduction with the GeCKOv2 library versus read counts from the library plasmid.

Read counts ar4e normalized log2 reads. (B) RRA p-value distribution for all genes in the GeCKOv2 library. (C) Overlap of top-ranked (top 500) genes between 3

different analysis methods (RRA, RIGER, and SBR). 142 genes are found by all 3 methods. (D) Comparison of top-ranked genes between different genome-scale

CRISPR screens for SARS-CoV-2 infection.
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Figure S2. Gene Set Enrichment and Overlap of Top-Ranked Genes with Other Viral Infections, Related to Figures 2 and 3

(A) – (D) Four of the significant (FDR < 0.1) top-ranked GO biological process terms and the fold-change ranks of their genes in the SARS-CoV-2 lowMOI CRISPR

screen. (E) Normalized gene ranks of the top 50 genes from the SARS-CoV-2 low MOI CRISPR screen and genome-scale CRISPR screens for Zika virus (ZIKV)

and H1N1 avian influenza (IAV).
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Figure S3. Validation of Top-Ranked Genes Using CRISPR Perturbations and RNA Interference, Related to Figure 4

(A) western blot analysis of RAB7A, CCDC22, ATP6V1A, and ACE2 after transduction of A549ACE2 with the indicated CRISPR guide RNA and selection with

puromycin for 7 days. For validation, we designed 3 independent guide RNAs per gene (i.e., distinct guide RNAs from those in the GeCKOv2 library). Beta tubulin

was used as loading control. (B) Quantitative PCR (qPCR) of SARS-CoV-2 viral load present in A549ACE2 CRISPR-perturbed cells infected with SARS-CoV-2 at

MOI of 0.1. The qPCRwas performed on cells collected at the indicated time (hours) post-infection (hpi) (n = 6 biological replicates, error bars indicate s.e.m.). (C)

western blot analysis of RAB7A and ACE2 after transduction of Huh7.5ACE2 with the indicated CRISPR guide RNA and selection with puromycin for 7 days. For

(legend continued on next page)
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validation, we designed 3 independent guide RNAs per gene (i.e., distinct guide RNAs from those in the GeCKOv2 library). Beta tubulin was used as loading

control. (D) qPCR of SARS-CoV-2 viral load present in Huh7.5ACE2 CRISPR-perturbed cells infected with SARS-CoV-2 atMOI of 0.1. The qPCRwas performed on

cells collected and fixed at 36 h.p.i (n = 3 guide RNAswith 6 biological replicates each, error bars indicate s.e.m.). (E) Immunofluorescence quantification of SARS-

CoV-2 N protein at 36 hours post-infection (hpi) at MOI 0.1 in A549ACE2 cells pretreated with siRNA pools for 48 hours (n = 3 technical replicates, error bars

represent s.e.m., NT indicates non-targeting controls).
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Figure S4. Perturbations of Enriched CRISPR Screen Genes with Small-Molecule Inhibitors, Related to Figure 4
(A) Immunofluorescence quantification of SARS-CoV-2 N protein at 36 hpi (MOI 0.1) in A549ACE2 cells pretreated for 2 hours with 10 mMof the indicated inhibitors

(n = 3 biological replicates, error bars represent s.e.m.) (B) Quantitative PCR (qPCR) of SARS-CoV-2 viral load present in A549ACE2 cells (CRISPR-perturbed with

either non-targeting or PIK3C3-targeting guide RNAs) pretreated for 2 hours with the indicated PIK3C3molecule inhibitors at 10 mMand then infected with SARS-

CoV-2 at MOI of 0.1. The qPCR was performed at 36 hours post-infection (hpi). Inhibitors were maintained at the same concentration throughout the experiment

(n = 6 biological replicates, error bars indicate s.e.m.). (C) Immunofluorescence quantification of SARS-CoV-2 N protein at 36 hpi (MOI 0.1) in A549ACE2 cells

pretreated with a combination of indicated inhibitors at 10 mM each for 2 hours (n = 3 biological replicates, error bars represent s.e.m.).
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(legend on next page)
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Figure S5. ECCITE-Seq Identifies Cholesterol Gene Signature Shared across Multiple Top-Ranked Genes, Related to Figure 5

(A) Stacked violin plot of 11 genes shared in both ECCITE-seq experiments. Single-cells are grouped by unique guide RNA target gene label of cells with a single

detected guide RNA. Target gene expression is highlighted in red. (B) Heatmap of Gene Set Enrichment Analysis results for genes downregulated in any of the

indicated target gene perturbed cells. (C) Cholesterol (normalized by total protein) in A549ACE2 cells treated with amlodipine or vehicle (DMSO) for 24 hours. (D)

Quantitative PCR (qPCR) of SARS-CoV-2 viral load present in A549ACE2 cells treatedwith amlodipine or DMSO for 24 hours and then infectedwith SARS-CoV-2 at

MOI of 0.1. The qPCRwas performed on cells collected at the indicated time (hours) post-infection (hpi) (n = 3 biological replicates, error bars indicate s.e.m.). (E)

Plaque assays of SARS-CoV-2 viral load present in A549ACE2 cells treated with amlodipine or DMSO for 24 hours and then infected with SARS-CoV-2 using

logarithmically diluted supernatants. (n = 3 biological replicates, error bars indicate s.e.m.). (F) Number of reads mapping to the indicated portion of the viral

genome in A549ACE2 cells treated with amlodipine or DMSO. A representative sample is shown for each treatment (n = 3 biological replicate sequencing libraries).

(G) Cell viability by TrypanBlue exclusion in A549ACE2 cells treatedwith amlodipine or DMSO for 24 hours (n = 3 biological replicates, error bars indicate s.e.m.). (H)

Distance matrix of RNA-sequencing from A549ACE2 cells treated with amlodipine or DMSO for 24 hours and then infected at MOI 0.1 or mock infection (n = 3

biological replicate sequencing libraries for each treatment-infection group). Read counts were processed with the DESeq2 regularized-log transform before

computing distances. (I) k-means clustering (k = 3) of the top 500 most variable genes across all 4 conditions (n = 3 biological replicate sequencing libraries for

each treatment-infection group). For each cluster, we label themost enriched pathway (lowest p-value) and, for the genes in that pathway, we label the top 5most

variable genes. No significantly enriched pathways were found for Cluster 3.
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Figure S6. Flow Cytometry for Cell Surface ACE2 Expression and Protein Analysis of RAB7A Protein after CRISPR Targeting, Related to

Figure 6

(A) and (B) Flow cytometry gating strategy to quantify cell surface expression of ACE2. (A) Live cells were first gated by the forward and side scatter area, then

doublets were excluded by gating with the forward scatter area and width. Viable cells were selected by gating on side scatter area and LIVE/DEAD violet. (B)

Gating strategy to determine ACE2+ cells. The gate was position such that < 3% of A549 wild-type and > 85% of A549ACE2 cells were ACE2 positive. The same

gating strategy was applied to all samples. (C) western blot on A549ACE2 cells perturbed with non-targeting (NT) or RAB7A-targeting guide RNAs and probed with

a RAB7A antibody. GAPDH was used as loading control.
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