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Recurrent somatic mutations as predictors of
immunotherapy response
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Immune checkpoint blockade (ICB) has transformed the treatment of metastatic cancer but is

hindered by variable response rates. A key unmet need is the identification of biomarkers that

predict treatment response. To address this, we analyzed six whole exome sequencing

cohorts with matched disease outcomes to identify genes and pathways predictive of ICB

response. To increase detection power, we focus on genes and pathways that are significantly

mutated following correction for epigenetic, replication timing, and sequence-based covari-

ates. Using this technique, we identify several genes (BCLAF1, KRAS, BRAF, and TP53) and

pathways (MAPK signaling, p53 associated, and immunomodulatory) as predictors of ICB

response and develop the Cancer Immunotherapy Response CLassifiEr (CIRCLE). Compared

to tumor mutational burden alone, CIRCLE led to superior prediction of ICB response with a

10.5% increase in sensitivity and a 11% increase in specificity. We envision that CIRCLE and

more broadly the analysis of recurrently mutated cancer genes will pave the way for better

prognostic tools for cancer immunotherapy.
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Immunotherapies, such as immune checkpoint blockade (ICB)
have transformed the treatment of advanced-stage cancers1.
Patients with unresectable or metastatic disease can survive

many years with ICB treatment2, although only a minority of
treated patients demonstrate durable responses3. Given the high
cost and potential toxicity of these drugs, a major unmet need in
immuno-oncology is a robust and clinically practical algorithm to
predict ICB response.

Currently, there are several biomarkers that positively correlate
with ICB response, such as patient age4, tumor type5, and tumor
mutational burden (TMB)6. TMB, which is generally calculated
from targeted gene or exome sequencing data, is the most well-
established marker of ICB response6–11 and is used in an FDA-
approved clinical diagnostic (FoundationOne CDx). TMB-high
tumors are thought to be more immunogenic and hence
responsive to ICB due to their increased burden of neoantigens.

Previous studies have proposed RNA-based biomarkers of ICB
response based on the expression levels of immune checkpoint12

and T-cell associated13 genes; although these present different
challenges for routine clinical use, as RNA is more labile and
prone to degradation than DNA. Immunohistochemistry-based
assessment of PD-L1 expression is routinely applied in the clinic,
but has shown inconsistent correlation with ICB response14.
Though recent whole exome sequencing (WES) studies have
attempted to go beyond TMB to link specific DNA alterations to
ICB response7,15–19, they have been limited by low sample sizes
and underpowered (genome-wide) analytic approaches.

Here, we combine six cohorts with Response Evaluation Cri-
teria in Solid Tumors (RECIST) characterization and matched
WES for 319 patients across a variety of tumor types with the goal
of identifying gene and pathway biomarkers of ICB response.
Although we build a larger cohort by pooling several studies, the
sample size is still limiting for genome-wide significance. To
address this, we focused on recurrently mutated (and likely posi-
tively selected) genes and pathways, which we nominated after
correcting for known covariates of neutral mutation density20.
We then determined the ability of these genes and pathways to
predict response using a simple logistic regression model. These
features were combined with other predictive variables such as
age, tumor type and TMB, to create the Cancer Immunotherapy
Response CLassifiEr (CIRCLE), which outperformed current
TMB-based biomarkers such as the FoundationOne CDx11.

Results
The aggregated cohort replicates known predictors of ICB
response such as tumor mutational burden and age. We
aggregated WES and clinical (including RECIST categorization)
data from six previously published immunotherapy studies7,15–19

encompassing 319 patients (Fig. 1a, Supplementary Table 1, 2).
These studies included patients with diverse tumor types (mela-
noma, non-small cell lung cancer (NSCLC), bladder cancer, and
head and neck cancer) with primarily pre-treatment WES and
post-treatment RECIST categorization of ICB response. As
expected, given the diverse tumor types, a large range of response
rates was observed among the studies, ranging from 6 to 56% of
patients with partial or complete response (Supplementary
Table 2). Among these patients we identified; 14 complete
responders, 80 partial responders, 47 patients with stable disease,
and 178 with progressive disease. To study genomic predictors of
ICB response, we dichotomized response data, treating complete
and partial responders as “responders” and progressive disease
patients as “non-responders” (Fig. 1b). In total, these two groups
contain 272 patients consisting of 202 patients with melanoma,
41 with NSCLC, 22 with bladder cancer, and 7 with head and
neck cancer (Fig. 1c). Using this curated dataset, we sought to

understand whether previously described correlates of ICB
response were also predictive in our aggregated cohort.

To examine the correlation of TMB with ICB response, we
categorized somatic mutations in the tumors of responders and
non-responders into four mutational impact classes (High,
Moderate, Low, and Modifier) as defined by the SnpEff
annotation and prediction framework21. Mutational burdens of
High and Moderate impact mutations were found to be
significantly different in responders when compared to non-
responders (54.1 vs 36.7 mutations per patient respectively,
Bonferroni-corrected Welch’s two-tailed t test of log2 (TMB),
p= 2.6 × 10−6 for High, 534.8 vs 378.9 mutations per patient
respectively, p= 1.5 × 10−6 for Moderate). Three studies7,15,16

were excluded from the analysis of Low and Modifier mutations
(e.g. synonymous) as they reported few mutations of these classes
(Supplementary Table 3). As expected, the burden of Low and
Modifier mutations was not significantly different between
responders and non-responders (Bonferroni-corrected Welch’s
two-tailed t test of log2 (TMB), p= 0.07 for Low, p= 0.90 for
Modifier) (Fig. 1d), despite their being present in tumor exomes
at equal or greater abundance than High impact mutations (see
Methods) (Supplementary Fig. 1a, b).

We further stratified TMB by variant classes, such as stop gain,
missense, and synonymous, and found similar results (Supple-
mentary Fig. 1c, d). For this study, we defined TMB as the sum of
High and Moderate impact mutations, as these mutation classes
capture non-synonymous mutations, reflecting the most com-
monly used definition of TMB7,11,15–19,22–26. We found that TMB
was significantly higher in responders (1.4-fold more mutations
in responders, Welch’s two-tailed t test difference of log2 (TMB),
p= 1.4 × 10−6) (Fig. 1d). Other groups have also suggested that
certain mutation types might be more predictive of immunother-
apy response11.

We then stratified the analysis of TMB across the eligible
tumor types and found significant associations with ICB response
in melanoma and NSCLC (melanoma: 1.5-fold, Welch’s two-
tailed t test p= 2.0 × 10−5; NSCLC: 2.5-fold, p= 0.003) and a
positive trend amongst bladder and head and neck tumors
(bladder: 1.9-fold, Welch’s two-tailed t test p= 0.08; head and
neck: 1.1-fold, p= 0.94) (Fig. 1e). We also found a significant
difference in age between ICB responders and non-responders
(on average, responders were 4.5[0.9–8.0] years older, Welch’s
two-tailed t test p= 0.01) and a significant positive correlation
between age and the included RECIST response categories
(Spearman’s rank correlation rs= 0.14, p= 0.03) (Fig. 1f). In
agreement with this result, Kugel et al.4 recently found that
metastatic melanoma patients over the age of 60 had better
responses to anti-PD1 checkpoint inhibitors than younger
patients.

Mutations in the transcriptional repressor gene BCLAF1 are
predictive of immunotherapy non-response. Previous genome-
wide analyses of ICB response have primarily focused on global
mutational patterns, under the premise that ICB responsive
tumors will have a high burden of neoantigens8,11. However
functional mutations at individual genes may alter tumor cells
and make them more immunogenic or ICB resistant. For
example, loss or mutation of B2M is an immune evasion
mechanism that causes loss of class I MHC antigen presentation
and may render tumors resistant to ICB therapy27,28. While most
somatic mutations are neutral passengers, a subset of genes are
under positive selection in tumors and frequently harbor func-
tional mutations. Such genes can be identified through statistical
approaches that model neutral mutational processes to identify
genes that harbor an excess of mutations above background. To
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identify functional mutations that may mediate ICB response, we
applied a two-stage biomarker discovery methodology: In the first
“feature selection” phase, we identified positively selected genes in
the cohort, irrespective of response data. In the second, “bio-
marker association phase”, we assessed the features nominated in
the first phase for their correlation with immunotherapy response
in a multivariate logistic model.

To identify positively selected genes and pathways in the
aggregated immunotherapy cohort, we adapted fishHook, a
statistical method originally developed to study noncoding
mutational recurrence in whole genome sequencing20. We limited
the fishHook analysis to the coding regions of 19,688 genes that
are consistently captured by WES. To nominate genes under
positive selection, we corrected for several known determinants of
neutral genome-wide mutational density, including replication
timing, sequence context, and chromatin state29. In total, we
examined 129,344 High and Moderate impact mutations from
our cohort, excluding any mutations occurring at bases that were

covered in less than 80% of patients from The Cancer Genome
Atlas (TCGA) WES datasets. From this, we identified six
recurrently mutated genes using a significance threshold of
q < 0.1: BCLAF1, BRAF, KRAS, NRAS, PPP6C, and TP53. Using a
quantile-quantile plot (Fig. 2a), we observed a genomic p-value
inflation factor (λ) of 1.03, indicating adequate modeling of
neutral mutational processes.

The somatic genotypes of six genes were then tested for their
ability to predict response using logistic regression with Age,
tumor type, log2 (TMB), and Study of Origin as covariates. Of
these genes, four (BCLAF1, KRAS, BRAF, and TP53) were
significantly predictive following multiple-hypothesis correction
(q < 0.2). The top hit, BCLAF1 (BCL2 Associated transcription
Factor 1), was depleted in responders (odds ratio of mutation
status in responders to non-responders = 0.096 [0.026–0.304],
Wald’s test of coefficients p= 0.0002, q= 0.001) (Fig. 2b).

BCLAF1 encodes a transcriptional repressor that regulates the
type 1 interferon response30. Knockdown of BCLAF1 led to
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Fig. 1 An aggregated cohort of immune checkpoint blockade (ICB) patients replicates known correlations between tumor mutational burden and age
with treatment response. a Overview of the two-stage approach for immunotherapy response prediction. We pooled 6 cohorts of immune checkpoint
blockade (ICB) recipients with matched whole-exome sequencing (WES) and Response Evaluation Criteria in Solid Tumors (RECIST) classification. We
identified genes and pathways under positive selection and tested the nominated genes and pathways for their ability to predict ICB response. The
significant predictors were used to develop and test an ICB response prediction algorithm. b Number of patients from the aggregated set of 6 cohorts in
each RECIST response group. Patients with stable disease were excluded from analyses and the RECIST classifications of complete response and partial
response were both considered responders. c Proportion of tumor types amongst ICB responders and non-responders. d Enrichment (effect size, Hedge’s
g) for different types of mutations in responders (n= 94) and non-responders (n= 178) to ICB therapy. Error bars represent the 95% confidence interval
and significance was determined using a two-sided Welch’s t test with Bonferroni correction. Tumor Mutational Burden (TMB) is the union of High and
Moderate mutations. e TMB for responders (n= 94) and non-responders (n= 178) to ICB therapy by tumor type. Statistical significance was tested using
two-tailed Welch’s t tests of log2 TMB. f Patient ages for different RECIST response groups (complete response n= 14, partial response n= 80,
progressive disease n= 178). Statistical significance was tested using a two-tailed Welch’s t test. In e and f, the boxplot center line denotes median, with
box limits being the 25th and 75th percentile. Boxplot whiskers indicate 1.5 times the interquartile range, while outliers above/below the whiskers are
represented individually as points.
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decreased STAT1 and STAT2 phosphorylation, and increased
susceptibility to infection by alphaherpesvirus in lung and brain
tissue of mice. BCLAF1 also interacts with STAT2 and interferon-
stimulated response elements to enhance the transcription of
interferon response genes. BCLAF1-null T-cells have impaired
development and do not respond to TCR and CD28 stimulation
even in the presence of IL-231. BCLAF1 has also been shown to
function downstream of NF-KB to upregulate IL-832, is regulated
by SIRT133, and plays a role in DNA damage response34.

BCLAF1 mutations were present in 15.2% of non-responders
and only 6.4% of responders (Fig. 3a). Furthermore, BCLAF1
mutations were enriched in older melanoma patients with high
TMB: When testing for this association, we found that patients
with BCLAF1 mutations had higher log2 (TMB) (9.4) than
BCLAF1 WTs (7.6, Welch’s two-tailed t test, p= 2.3 × 10−7)
(Fig. 3b), but that there was no significant difference in age
between BCLAF1 mutants (62 years) and WTs (60 years, Welch’s
two-tailed t test, p= 0.36) (Fig. 3c). Given these results, we
divided patients into a TMB-high group (>10 mutations/
megabase)35,36 and a TMB low group (<10 mutations/
megabase)35,36, and observed that BCLAF1 was significantly
associated with response in the TMB-high group (OR= 0.25
[0.07–0.78], Fisher’s exact p= 0.01), but not in the TMB low
group (OR= 0.33 [0.01–2.60], Fisher’s exact p= 0.44). These
results suggest that BCLAF1 mutations may identify a unique
subset of TMB-high non-responders.

To better understand the functional context of BCLAF1
mutations, we plotted each mutation across the BCLAF1 protein
sequence, separated by response status. We identified two
mutation clusters within a Pfam functional domain (PF15440,
THRAP3/BCLAF1 family), one of which was present only in
non-responders (Fig. 3d). BCLAF1 mutations were present across
multiple tumor types; melanomas had the highest overall
prevalence (14.4%), with bladder cancer (9.1%) and NSCLC
(4.9%) also harboring BCLAF1 mutations (Fig. 3e, f). Given these
differences and the wide range of response rates among the
various studies and tumor types in our dataset, we explicitly
tested if BCLAF1mutations acted as a surrogate for tumor type or
study of origin. We found no significant difference in the
frequency of BCLAF1 mutations across the various tumor types

and studies of origin when compared to the overall frequency of
BCLAF1 mutations (two-tailed Fisher’s exact test, p > 0.05 for all
tumor types and studies of origin).

Among the other predictive genes (Supplementary Fig. 2),
BRAF and KRAS mutations were enriched in responders (BRAF:
OR= 2.1, q= 0.09; KRAS: OR= 6.1, q= 0.09), while TP53
mutations were enriched in non-responders (OR= 0.44,
q= 0.09). In our aggregated cohort, the tumor type distributions
among BRAF, KRAS, and TP53 were as expected, with BRAF
exhibiting a strong bias towards melanoma, KRAS exhibiting a
strong bias towards NSCLC and TP53 exhibiting a pan tumor-
type distribution (Supplementary Fig. 3). In total, we identified 4
ICB response predictive genes from our logistic regression
(BCLAF1, BRAF, KRAS, and TP53).

MAPK-ERK pathways are biomarkers of ICB response. Since
certain cancer genes (e.g. BRAF) share pathways with other more
rarely mutated targets of driver alteration (e.g. ARAF, RAF1), it
may be useful to consider mutational status in a set of genes as
a predictive biomarker. To expand our two-stage biomarker
discovery approach to multi-gene biomarkers, we applied
fishHook20 to a collection of gene sets from the Reactome data-
base (n= 2022 pathways)37. We nominated 199 recurrently
mutated pathways (Supplementary Fig. 4a) across the 272 pro-
filed cases (q < 0.1) in the first feature selection stage.

In the second stage, we correlated pathway mutational status
with ICB response using Age, tumor type, TMB and Study of
Origin as covariates in a logistic regression model similar to our
gene level analysis (see above). After multiple-hypothesis
correction, 54 pathways were found to be significant predictors
of response (q < 0.2) (Fig. 4a, Supplementary Table 4). To
minimize the redundancy of pathways with many shared genes,
we ordered the nominated pathways by significance and excluded
pathways that shared greater than 40% of genes (see Methods)
with more significant pathways (Supplementary Fig. 4b, Supple-
mentary Table 5).

Of the 21 remaining pathways, we conducted further gene level
analysis and found that 9 of the 21 pathways contain TP53, 7
pathways contained either BRAF or KRAS, and that there was
no overlap between the TP53-containing pathways and the
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BRAF/KRAS-containing pathways. Five pathways did not contain
any of the previously identified genes: “Integrin cell surface
interactions” (q= 0.12, OR= 3.59 [1.25–11.18]), “Assembly of
collagen fibrils and other multimeric structures” (q= 0.17,
OR= 2.96 [0.99–9.79]), “CD28 dependent Vav1 pathway”
(q= 0.17, OR= 0.47 [0.20–1.03]), “FMO oxidizes nucleophiles”
(q= 0.18, OR= 2.11 [0.90–5.03]), “Scavenging by Class A
Receptors” (q= 0.18, OR= 0.48 [0.20–1.08]).

To understand the functional implications of mutations in
these genes, we compared the genes in these pathways with our
recent genome-wide pooled CRISPR screen for immune
evasion38. This forward genetic screen targeted virtually all genes
(n= 19,050 genes and 1864 microRNAs) in human melanoma to
identify loss-of-function mutations that drive resistance to
adoptive T-cell immunotherapy. Specifically, we examined the
overlap between WES-derived pathway predictors and the
enriched candidate genes from this functional genomic screen.
The enriched genes in this CRISPR screen significantly (q < 0.1)
overlapped with 7 of the 21 pathways (see “Methods”) (Fig. 4b,
Supplementary Table 6). To further explore the overlapping
pathways at the gene level, we tested each gene within a given
pathway using the same logistic regression method as in the gene-
level analysis and plotted the log2 (odds ratio) (responder/non-
responder) and the nominal p-value for each gene. Several
pathways exhibited multi-gene trends towards either responders
or non-responders (Fig. 4c, d, Supplementary Fig. 4c–g).

Four of the 7 overlapping pathways contained TP53. p53-
Dependent G1 DNA Damage Response, which had the most
significant overlap with the CRISPR screens, including
UBA52, CCNE1, and eight genes that encode proteasome
subunits (PSMB5, PSMA6, PSMC2, PSMD7, PSMA5, PSMB2,
PSMA7, PSMB4). Activation of NOXA and Translocation to

Mitochondria overlapped with two CRISPR screen genes
(PMAIP1, E2F1). Chaperonin-mediated Protein Folding which
overlapped with seven CRISPR screen genes (GNB3, CSNK2B,
TUBA1C, GNAT2, CCNE1, NOP56, TUBB2B), and RUNX3
Regulation of CDKN1A Transcription which overlapped with
one CRISPR screen gene (ZFHX3). One pathway (MAP2K and
MAPK Activation) contained BRAF and overlapped with three
CRISPR screen genes (BRAF, ITGA2B, FGG). The last two
pathways (Scavenging by Class A Receptors and Integrin Cell
Surface Interactions) did not contain genes identified in the gene-
level analysis. Scavenging by Class A Receptors contained three
CRISPR screen genes, COLEC12 and APOE which are both
associated with Alzheimer’s Disease39,40, and CALR which
encodes a chaperone for MHCI folding41. Integrin Cell Surface
Interactions overlapped with six CRISPR screen genes; ICAM1
which functions in leukocyte adhesion42, VTN which functions
in macrophage adhesion43,44, two integrin subunits (ITGA2B,
ITGB1), a collagen subunit (COL18A1), and the gamma
component of fibrin (FGG) (Supplementary Table 6).

Combining identified genes and pathways is superior to tumor
mutational burden alone for predicting patient response to
checkpoint blockade. Next, we sought to quantify whether
somatic mutations in the genes and pathways that we identified
could improve our ability to predict immunotherapy response
over TMB alone. We combined the significantly predictive genes
(BCLAF1, TP53, KRAS, and BRAF), the predictive pathways that
overlapped with prior functional genomic screens (p53-Depen-
dent G1 DNA Damage Response, Activation of NOXA and
translocation to mitochondria, Chaperonin mediated protein
folding, RUNX3 regulates CDKN1A transcription, MAP2K and
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MAPK activation, Scavenging by Class A Receptors, and Integrin
cell surface interactions), and baseline features (age, TMB, and
tumor type) into a multivariate logistic predictor of immu-
notherapy response. We term this predictive framework the
Cancer Immunotherapy Response CLassifiEr (CIRCLE). To build
CIRCLE, we fit a logistic regression model based on these features
to the ICB response data and tested its ability to predict immu-
notherapy treatment response (Supplementary Table 7).

To benchmark CIRCLE, we compared it against a simulated
version of FoundationOne CDx (FO), a clinically-available, FDA-
approved companion diagnostic that reports mutations found in
a preselected set of genes8,45,46. FO estimates TMB by counting
non-synonymous and protein-coding mutations across a panel of
323 genes47. To simulate the FO diagnostic, we filtered the WES
data for these 323 genes and computed TMB (“FO-TMB”). We
then built a logistic regression classifier by fitting the FO-TMB to
ICB response data. Using cross-validation, we found that CIRCLE
resulted in better prediction than FO-TMB as calculated by the
area under the receiver operating characteristic curve (AUC)
(mean CIRCLE AUC: 0.75 95% CI [0.74–0.76], mean FO-TMB:
0.66 95% CI [0.65–0.67]) (Fig. 5a). We also calculated the AUCs
for the consensus of the cross-validation classifications and found

a similar difference in AUC between CIRCLE (AUC: 0.73) and
FO-TMB (AUC: 0.63) (DeLong p= 0.006)48.

We also computed the sensitivity (true positive rate), specificity
(true negative rate), and harmonic mean of precision and recall
(F1-score) of CIRCLE and FO-TMB. When using CIRCLE, we
found a 10.5% increase in sensitivity (CIRCLE: 75.5%, FO-TMB:
68.3%), a 11.0% increase in specificity (CIRCLE: 70.9%, FO-TMB:
63.8%) (Fig. 5b), and a 14% increase in the F1-score (CIRCLE:
0.65, FO-TMB: 0.57).

To better understand the improved prediction, we tested each
of the following subsets of the CIRCLE feature set for their
predictive ability: baseline features (age, TMB, and tumor type;
consensus AUC: 0.65), genes (AUC: 0.56), and pathways (AUC:
0.62) (Supplementary Fig. 5a–d). Baseline features and genes
together yielded an AUC of 0.69 (compared to baseline features
alone: DeLong p= 0.11); however, baseline, genes, and pathways
together yields an AUC of 0.73 (compared to baseline features
alone: p= 0.02; compared to baseline features and genes:
p= 0.16) (Supplementary Fig. 5e). Importantly, pathways were
not redundant with genes: Genes and pathways together had an
AUC of 0.69 (compared to genes alone: p= 4 × 10−4; compared
to pathways alone: p= 4 × 10−3).
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CIRCLE scores (the probability of response under the logistic
regression model) also yielded a better separation of responders
and non-responders than FO-TMB scores in aggregate (standar-
dized difference of mean predictive scores in responders and non-
responders: Θ = 1.10 for CIRCLE, 0.51 for FO-TMB) (Supple-
mentary Fig. 5f, g) and on an individual patient level (Fisher’s
exact test for association between classifier assigned and true
response status, CIRCLE: OR= 9.9 95% CI [5.33–19.11], p < 2.2 ×
10−16; FO-TMB: OR= 3.04 95% CI [1.76–5.29], p= 3.1 × 10−5)
(Fig. 5c, d). We also examined the precision versus recall curves of
the CIRCLE model as compared to FO-TMB and observed an area
under the precision recall curve (AUPRC) of 0.57 for CIRCLE and
0.45 for FO-TMB (Supplementary Fig. 5h–l).

Although CIRCLE was trained to predict ICB response, we
asked whether CIRCLE scores were also correlated with overall
survival (OS). For this purpose, we stratified patients based on
their CIRCLE response classification and found that CIRCLE
responders also had increased OS (two-sided Cox proportional
hazards with tumor type as a covariate: p= 2 × 10−3, comparing
CIRCLE classification to OS, p= 10−4 comparing CIRCLE score
to OS) (Fig. 5e). A natural question is whether CIRCLE is truly
predictive or whether biomarkers that correlate with therapy
response may just be indicative of a milder disease subtype. For
this purpose, we examined 2184 patients from the TCGA
PanCancer Atlas cohort49 whose tumor types were present in
our cohort: non-small cell lung cancer (n= 368 for squamous cell
carcinoma and n= 467 for adenocarcinoma), melanoma
(n= 361 cutaneous and n= 80 uveal), head and neck squamous
cell cancer (n= 514), and bladder cancer (n= 394). Using each
patient’s clinical features and WES data, we computed CIRCLE
scores. Within the TCGA PanCanAtlas cohort, we observed that
CIRCLE responders and non-responders had comparable OS in
the whole cohort and the individual tumor types (Supplementary
Fig. 6), supporting our conclusion that the CIRCLE score is
predictive and not merely prognostic.

Finally, we tested the generalizability of the CIRCLE model
with independent validation cohorts not used in the development
or training of our model. We selected one melanoma cohort22

(n= 124) and one non-small cell lung cancer cohort23 (n= 41).
In these independent validation cohorts, the CIRCLE classifier
had an AUC of 0.61 (OR= 2.73, Fisher’s exact p= 0.003)
(Supplementary Fig. 7a). The AUC for TMB was also 0.61. To
determine how much additional predictive ability CIRCLE
provides beyond TMB, we fit a logistic regression model for true
response with CIRCLE prediction and TMB-high status (>10
mutations per Mb) as independent variables35,36. We observed
that CIRCLE scores yielded a significant increase in prediction
over a model with TMB alone (p= 0.02, two-tailed Wald’s test).
BCLAF1 showed a non-significant trend for enrichment in TMB-
high non-responders (OR= 0.67 [0.19–2.33], p > 0.05) which
emphasizes the need for additional pan-cancer data to determine
if the BCLAF1 association generalizes widely. We also found
improved survival among CIRCLE responders (CIRCLE score
p= 0.022, CIRCLE responder/non-responder p= 0.011) in the
subset of validation cohort cases (n= 124) with reported OS data
(Supplementary Fig. 7b). While CIRCLE and TMB yielded the
same AUCs for response prediction in the validation cohort, joint
analysis of these features in a logistic regression model showed
that the CIRCLE score was independently predictive of response
above TMB. Taken together, these results support broader
investigations into CIRCLE and more generally recurrent somatic
alterations as immunotherapy biomarkers.

Discussion
Previous studies have used a variety of different biomarkers to
predict ICB response, including tumor mutations found in candi-
date genes27,50, mutations found through wholegenome sequencing
or WES7,15–19, transcriptomics12,13, tumor mutational burden8,51,
T cell diversity/clonality52,53, and neoantigen production54,55. In
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addition, recent work has integrated multiple different biomarkers,
such as combining tumor mutational burden, DNA sequencing,
and RNA sequencing50. Our study focuses on biomarkers derived
from existing cohorts of immunotherapy patients with paired WES
and response data alongside clinically relevant metadata. It capita-
lizes on the advantages of both candidate gene and genome-wide
approaches to achieve optimized predictive power with a modest
cohort size. Using several previously published studies, we assem-
bled a larger cohort of WES profiled tumors than in many recent
studies7,15–19. Then, via analysis of positive somatic selection, we
nominated a small set of genes and pathways enriched in likely
functional mutations. Mutation status in these genes and pathways
enabled superior prediction of cancer ICB response when compared
to previously reported metrics such as TMB.

Our results add to a growing body of evidence implicating
KRAS mutations in immunotherapy resistance. Recently, Van
Allen and colleagues also noted that KRAS mutations correlate
with ICB response in a WES meta-analysis (partially overlapping
with our study)19; however, KRAS mutations were nominally but
not genome-wide significant in that analysis. A separate targeted
sequencing study in 47 NSCLC patients treated with anti-PD1
inhibitors found that patients with KRAS mutant tumors have a
longer progression-free survival (PFS) and overall survival (OS)
than KRAS wild-type patients (hazard ratio [HR]= 0.48,
p = 0.04)56. Other groups have demonstrated that KRAS muta-
tion status in NSCLC is associated with an inflammatory tumor
microenvironment, including PD-L1 expression and CD8+
tumor-infiltrating lymphocytes57. But this result may be specific
to lung cancer, as others have shown that in colorectal cancers,
mutant KRAS can repress interferon response genes58. As our
meta-analysis cohort did not include colorectal cancers, we are
unable to discern the role of KRAS mutations in treatment
response for these cancers. A study in 52 patients with NSCLC
also found that patients with TP53 mutations had a higher risk of
progression regardless of PD-L1 expression (HR= 3.3), although
the result was not significant (p= 0.05)59. Our correlation
between BRAF mutations and ICB response is discordant with
data from recent trials showing similar responses and durability
of responses in patients with BRAF wild-type and BRAF mutant
melanoma60.

We found that the CIRCLE classifier yields improved ICB
response prediction when compared to TMB. Larger immu-
notherapy cohorts will be needed to validate this finding, and
more broadly the principle that positively selected driver altera-
tions can help predict immunotherapy response. Larger pan-
cancer cohorts will allow us to test the assertion that BCLAF1
helps identify TMB-high ICB non-responders. Due to the cancer
type specificity of driver alterations, we can expect that expanding
CIRCLE to broader pan-cancer cohorts will require the classifier
to be revised with additional discovery analyses. Such analyses
will employ the two-stage approach to nominate additional
tumor-type relevant genes and pathways and correlate their
somatic genotypes with immunotherapy response, similar to the
approach taken in our study. We foresee that such expanded
CIRCLE classifiers will provide valuable information that may in
the future help guide treatment choice in the clinic, particularly as
the scope of immunotherapy broadens to additional cancer types.

With the extraordinary cost and the serious side effects asso-
ciated with ICB, there is a major unmet need for response bio-
markers. While panel testing is already used routinely in
immuno-oncology, our results suggest that the use of broader
diagnostics (including WES and whole genome sequencing) may
significantly improve this stratification of responders and non-
responders. A key practical challenge in clinical implementation
of the CIRCLE classifier is the need for WES to assess mutation
status at genes and pathways that are not commonly included on

cancer gene panels (e.g. BCLAF1). Aside from the formidable
issues of cost and logistics, one obstacle to routine whole exome
or genome sequencing is the perception that genes which are not
currently assayed by clinical gene panels have limited current or
near-term clinical relevance. In full awareness of this perception,
we hope that our study and other similar analyses will motivate
more formal and prospective explorations into the routine clinical
utility of these broader genomic assays.

Methods
Data curation. We aggregated WES data from immunotherapy patients with
matched Response Evaluation Criteria in Solid Tumors (RECIST) classification
from six previously published studies7,15–19. We analyzed 319 patients, labeling 94
patients with Partial Response (PR) or Complete Response (CR) as Responders and
178 patients with Progressive Disease (PD) as Non-Responders. We term this
group of 272 patients the immunotherapy cohort. Model cross-validation was
conducted using randomly assigned train-test splits of 75% test (n= 204) and 25%
train (n= 68). Survival analysis was conducted using the subset of patients with
survival data (n= 253). Due to the different end points of the studies, all of the
patients were right censored.

Data was aggregated such that the following fields were retained; Original Study
ID, RECIST Classification, Sex, Age, TNM Staging, Survival, Vital Status (at end of
follow-up), tumor type, Treatment Drug, and Stage. To minimize over-
stratification, we combined all variants of melanoma (e.g. uveal, skin) into a single
‘melanoma’ category. Additional annotation of the data included SnpEff variant
classification21 for each mutation within the dataset. SnpEff was primarily used to
predict the functional impact of mutations as “High”, “Moderate”, “Low” or
“Modifier”. Patients without age metadata were assigned an age equal to the mean
of the age for all patients with age metadata.

Biomarker analysis
TMB and age analyses. We analyzed TMB in responders and non-responders using
two-tailed Welch’s t tests with log2 of TMB to achieve more normally distributed
values. TMB was defined as the total number of “High” and “Moderate” SnpEff
mutations present within a patient’s WES data. High and Moderate mutations
include the following subclasses: missense variants, variants that impact protein-
protein contact, splice acceptor variants, splice donor variants, start lost variants,
stop gained variants and stop lost variants21. As a control, we tested whether Low
and Modifier mutations might be underrepresented, thus making it more chal-
lenging to detect significance. To this end, we tested for significant differences
between High, Moderate, Low, and Modifier mutations using a one-way ANOVA
(p < 2 × 10−16). We find that Modifier mutations do not occur at a significantly
different frequency than High impact mutations (post hoc Welch’s two-sample t
test, p= 0.71), and that Low impact mutations occur at a higher frequency than
High impact mutations (post hoc Welch’s t test, p < 2 × 10−16).

FoundationOne TMB is calculated as the total number of “Moderate” and
“High” mutations that fell within genes that are included as part of the
FoundationOne panel8, although this results in a similar TMB-based prediction of
response. That is, there is no significant difference between response prediction
based on TMB calculated from WES and response prediction based on the
simulated FoundationOne Panel TMB (AUC= 0.67 for exome TMB and 0.66 for
panel TMB, DeLong p= 0.25). The effect size for TMB was calculated as the
Hedge’s g statistic, the difference of means of log2 (count) of a given mutation class
divided by an estimated combined standard deviation weighted by sample sizes,
using the esc R package.

We analyzed age in responders and non-responders using a two-tailed Welch’s t
test of age and a Spearman’s rank correlation test, where ranking of included
RECIST categories proceeded as: Progressive Disease, Partial Response, Complete
Response.

Gene nomination. The first step of the two-step biomarker nomination was per-
formed by adapting the fishHook R package (https://github.com/mskilab/
fishHook)20 to identify recurrently mutated genes across the coding subset of the
WES mutation data. Briefly, fishHook fits a gamma-Poisson model to estimate
expected neutral mutational counts from mutation data while correcting for linear
covariates, such as replication timing, chromatin state, and sequence context. It
then compares the observed mutational rates to the estimated neutral model to
assess significance. This method was previously used to identify noncoding regions
that were recurrently mutated in the wholegenome sequences of human cancers20.
The specification of a fishHook model requires a set of mutations, a set of
hypotheses, an eligible subset of the genome, and zero or more genomic (numeric
or interval) covariates. each defined as genomic intervals. Covariates represent
sequence-derived (e.g. GC content) or cell type-specific features (e.g. chromatin
state, replication timing) that drive regional differences in neutral mutation density.
The method then compares the observed and expected density of mutations among
the eligible bases of hypotheses after applying a background linear model that uses
the average value of each covariate across eligible bases of each hypothesis as a
predictor.
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To adapt fishHook to the analysis of protein-coding genomic regions
consistently captured in WES experiments, we explored 19,688 GENCODE genes
(build 19) that also had metadata on GeneCards61. We then defined the eligible
subset as coding sequences (CDS) in which >80% of TCGA patients had
sequencing coverage. For mutations, we used SNVs and indels that SnpEff
classified as ‘Moderate’ or ‘High’ impact (n= 129,344 mutations). Given the multi-
tumor type dataset (spanning melanoma, bladder cancer, NSCLC and head and
neck cancer), we developed a custom pan-cancer covariate set (“covariome”) to
comprehensively capture the contribution of background genomic features to the
neutral mutation density. Briefly, we defined three types of biological covariates;
replication timing across 96 cell lines, 15 ChromHMM states across 127 cell lines
and tissues, and sequence context (mono, di and tri). Replication timing and
epigenomic data were obtained from the ENCODE and Roadmap Epigenomics
(Supplementary Data 1) projects, respectively62,63. Sequence context was derived
from the hg19 human reference genome. This yielded 96, 1905, and 98 replication,
chromatin, and sequence context-driven covariates, respectively. To reduce the
dimensionality of the fishHook analysis we used the first 50, 200, and 50 principal
components (PCs) of replication timing, ChromHMM states, and sequence context
respectively, yielding a final covariate set of 300 PC derived numeric covariates.

We extended the model to enable the nomination of pathways under somatic
selection. Briefly, given a fishHook model fit across n genes yielding an expected
mutation count ei at gene i, ; i 2 1; ¼ ; n, we then assessed the significance of gene
set I � 1; ¼ ; n by fitting the gamma-Poisson regression yi ~ offset (log ei) and
taking the magnitude and p-value of the fitted intercept as the pathway-level effect
size and significance.

In total we tested 19,688 genes and 2022 Reactome pathways37, with a
maximum gene/pathway contribution per patient equal to 1 mutation. Genes were
nominated using a q < 0.1 threshold where q-values were calculated using the
Storey method64.

Pathway nomination. In addition to looking for recurrently mutated genes, we
organized sets of genes into pathways and used fishHook to nominate recurrently
mutated pathways using identical parameters to the gene level analysis. Using this
approach, we initially nominated 199 pathways as recurrently mutated. A high
genomic inflation factor λ (slope linking observed -log10 P values to their expected
quantiles) was observed (λ = 6.52), and we hypothesized that this was due to the
repetition of the recurrently mutated genes among partially overlapping pathways.
Upon removal of all pathways containing any of the 7 previously nominated genes,
a λ of 1.17 was observed (Supplementary Fig. 4a). In total, 162 of the 199 nomi-
nated pathways contained one of the 7 previously nominated genes. We continued
the analysis using the full set of 199 nominated pathways, as we wanted to make
sure that we did not miss any associations between ICB response and pathways
containing key cancer genes such as TP53, BRAF, and KRAS, all of which were
among the 7 previously nominated genes. Pathways were nominated using a q < 0.1
threshold where q-values were calculated using the Storey method64. We calculated
the significance of overlap between the CRISPR screen nominated genes and the
immunotherapy cohort nominated genes using a hypergeometric test.

ICB response prediction. Biomarker nomination of genes and pathways was con-
ducted using a two-tailed Wald’s tests of logistic regression coefficients. Each
fishHook-nominated gene/pathway was converted to a binary feature such that 1
indicated that the patient had either a High or Moderate impact mutation any-
where in the given gene or in the case of pathways any High or Moderate impact
mutation within any gene in the pathway. 0 indicated that the patient did not have
such a mutation in the given gene/pathway. The association between the binary
response variable and the gene/pathway feature was modeled as:

Response � Logisticðα0 þ α1HasMutationþ α2TumorTypeþ α3Age

þ α4log2ðTMBÞ þ α5StudyofOriginÞ

with Age, log2 (TMB), Study of Origin and tumor type as covariates (all previously
identified biomarkers of ICB response). Multiple-hypothesis testing for genes and
pathways utilized Storey q-values65 with a significance threshold of q < 0.2 (λ = 0).

The odds ratios for each tested genomic biomarker were calculated as eα where
α is the fitted coefficient of the logistic regression model. Confidence intervals were
similarly calculated based on the confidence intervals of the coefficient. Mutation
plots were constructed using the lollipops R package66 where each reference-
alternate amino acid pair was plotted as a unique mutation.

Model validation. We fit a logistic regression model of selected genes, pathways,
tumor type, log2 (TMB), and Age to immunotherapy response, and named this
model the Cancer Immunotherapy Response CLassifiEr (CIRCLE). We created a
similar logistic classifier for comparison using a simulated FO-TMB measurement
where we counted the number of High and Moderate impact mutations across the
FO panel of 323 genes47. We computed specificity, sensitivity, AUROC and
F1 scores for CIRCLE and FO-TMB classifiers using the means of 100 Monte Carlo
cross-validation iterations of training (75%) and testing (25%) splits from the
immunotherapy cohort. An aggregate ROC curve was derived by averaging the
ROC curve from each iteration. The proportion of tumor types was kept constant
between the testing and training sets for each iteration and across iterations. For

each cross-validation iteration, we calculated the optimal cutoff (closest to point
(0,1)) from the averaged ROCs and used it to assign scores and response classifi-
cations to each patient. Patients with CIRCLE or FO-TMB classifier scores greater
than their associated cutoffs were classified as CIRCLE/FO-TMB responders
respectively. DeLong p-values were calculated by first having the classifiers for
CIRCLE and FO-TMB from each of the 100 iterations vote by a simple majority on
the classification of each patient. We then used the pROC R package to implement
the DeLong comparison method of AUCs48. We also performed 10-fold cross-
validation (not Monte Carlo) and found that the mean AUCs were not significantly
different (Monte Carlo CV: 0.752, 10-fold CV: 0.746, DeLong p= 0.11).

Survival analysis was conducted using the survival and survminer R packages,
comparing the CIRCLE patient response classifications using a log-rank test or
two-sided Cox proportional hazards model. For validation of ICB cohorts, tumor
type was used as a covariate for Cox regression, while for the TCGA cohort, tumor
type, age, stage, and TP53mutational status were used as covariates. Survival curves
used the Kaplan-Meier estimator and were performed using the survival package.

Additional software packages. Each studies’ data was downloaded from their
associated publication and combined in R version 3.4.367. All subsequent analysis
was conducted in R 4.0.267 and the following packages were used: abind 1.4-5,
bayestestR 0.10.0, BiocGenerics 0.34.0, broom 0.7.6, car 3.0-10, carData 3.0-4,
caTools 1.18.2, colorspace 1.4-1, conquer 1.0.2, corrplot 0.89, cowplot 1.1.1, cpp11
0.2.7, cvAUC 1.1.0, data.table 1.14.0, devtools 2.4.1, dplyr 1.0.7, effectsize 0.4.5,
emmeans 1.6.1, esc 0.5.1, estimability 1.3, exactRankTests 0.8-32, farver 2.0.3,
forcats 0.5.1, gdata 2.18.0, generics 0.1.0, GenomeInfoDb 1.24.2, GenomicRanges
1.40.0, genefilter 1.70.0, ggeffects 1.1.0, ggplot2 3.3.4, ggpubr 0.4.0, ggrepel 0.9.1,
ggsci 2.9, ggsignif 0.6.2, glue 1.4.2, gplots 3.1.1, gridExtra 2.3, gtable 0.3.0, gtools
3.8.2, gUtils 0.2.0, haven 2.4.1, hms 1.1.0, insight 0.14.1, IRanges 2.22.2, isoband
0.2.2, km.ci 0.5-2, KMsurv 0.1-5, labeling 0.3, lme4 1.1-27, lollipops 1.5.1, maptools
1.1-1, MatrixModels 0.5-0, maxstat 0.7-25, minqa 1.2.4, modelr 0.1.8, Munsell
0.5.0, mvtnorm 1.1-2, nloptr 1.2.2.2, numDeriv 2016.8-1.1, openxlsx 4.2.4, para-
meters 0.14.0, pbkrtest 0.5.1, performance 0.7.2, plyr 1.8.6, png 0.1-7, polynom1.4-
0, pROC 1.17.0.1, progress 1.2.2, quantreg 5.86, qvalue 2.20.0, RColorBrewer 1.1-2,
RcppEigen 0.3.3.7.0, readr 1.4.0, readxl 1.3.1, rematch 1.0.1, reshape2 1.4.4, rio
0.5.26, ROCR 1.0-11, rstatix 0.7.0, S4Vectors 0.26.1, scales 1.1.1, sjlabelled 1.1.8,
sjmisc 2.8.7, sjPlot 2.8.8, sjstats 0.18.1, skitools 0.0.0.9000, sp 1.4-2, SparseM 1.81,
statmod 1.4.34, stringi 1.6.2, survminer 0.4.8, survMisc 0.5.5, tidyr 1.1.3, tidyselect
1.1.0, viridisLite 0.3.0, xtable 1.8-4, XVector 0.28.0, zip 2.1.1, zoo1.8-8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Code and data for the analyses and figures are available in an interactive notebook here:
https://gitlab.com/sanjanalab/circle. All data analyzed in this manuscript are publicly
available and, for reproducibility, are also included in the GitLab repository. Source WES
data for training and validation cohorts can be obtained from the respective
studies7,15–19,22,23. Replication timing and epigenomic data were obtained from the
ENCODE and Roadmap Epigenomics projects, respectively62,63.

Code availability
Code to run the CIRCLE model is available here: https://gitlab.com/sanjanalab/circle.
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