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Abstract  Over the past few years, programmable RNA-guided nucleases such as 
the CRISPR/Cas9 system have ushered in a new era of precision genome editing in 
diverse model systems and in human cells. Functional screens using large libraries 
of RNA guides can interrogate a large hypothesis space to pinpoint particular genes 
and genetic elements involved in fundamental biological processes and disease-
relevant phenotypes. Here, we review recent high-throughput CRISPR screens (e.g. 
loss-of-function, gain-of-function, and targeting noncoding elements) and highlight 
their potential for uncovering novel therapeutic targets, such as those involved in 
cancer resistance to small molecular drugs and immunotherapies, tumor evolution, 
infectious disease, inborn genetic disorders, and other therapeutic challenges.
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7.1  �Introduction

The recent development of RNA-guided CRISPR nucleases for genome editing has 
created new opportunities for understanding the genetic basis of disease. With the 
development of pooled screens utilizing RNA-programmable nucleases, thousands 
of genes can be interrogated simultaneously to test many genetic hypotheses in 
parallel. Beyond their initial application for loss-of-function screening, pooled 
CRISPR screens have also been adapted for gene overexpression, repression, and 
enhancer region modulation. Here, we first present an overview of pooled screen 
workflows and how different CRISPR effectors can be harnessed to activate, repress, 
or knockout genes in different disease models (Fig.  7.1a). We also survey 
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applications of CRISPR screens in cancer, infectious diseases and inborn genetic 
disorders (Fig. 7.1b and Table 7.1). We highlight how these screens have been used 
for target discovery and potential therapeutic developments from identified target 
genes/genetic elements.

7.2  �Technologies for CRISPR Screens

7.2.1  �From Gene Editing to Pooled Screens

Programmable nucleases, such as the clustered regularly interspaced short 
palindromic repeat-associated nuclease Cas9 (CRISPR/Cas9) have ushered in a 
new era of precise genome manipulation. For targeted modification in mammalian 
cells, it is necessary to express both the Cas9 nuclease and a single-guide RNA 
(sgRNA) [1–3]. The sgRNA contains a 20 nt sequence complementary to the target 

Fig. 7.1  Pooled CRISPR screen platforms and applications. (a) Different CRISPR effectors for 
gene manipulation. CRISPRn: CRISPR nuclease target coding exons, where double-strand break 
repair introduces indel mutations that can result in gene knockout. CRISPRi: CRISPR interference 
fuses a KRAB repressive element to a catalytically inactive form of Cas9 that is capable of binding 
its genomic target but does not cut. This results in gene repression when targeted near the promoter. 
CRISPRa: CRISPR activation fuses one or more transcriptional activation elements (e.g. VP64, 
p65, HSF1, Rta, etc. [10]) to a catalytically inactive form of Cas9. This results in gene activation 
when targeted near the promoter. (b) Key disease areas in which pooled CRISPR have been used 
to understand genetic mechanisms and find new therapeutic targets
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genomic region, and a part of a palindromic repeat that forms the secondary struc-
ture for Cas9 docking [4]. Directed by sgRNA, Cas9 nuclease identifies a target 
genomic region and introduces a double-stranded break (DSB). Chromosomal 
DSBs are typically repaired through cellular repair mechanisms such as homolo-
gous recombination (HDR) or non-homologous end joining (NHEJ). In the NHEJ 
repair pathway, the Ku DNA-binding heterodimer first binds to the DNA terminus 
to initiate end processing and recruits enzymes such as Artemis-DNA-PKCS to trim 
the incompatible ends, polymerases to fill the gaps, and ligases (XRCC4-DNA-
ligase-IV complex) to seal the nick [5]. Cellular repair mechanisms such as NHEJ 
often create deletions or insertions (indel mutations) at the DSB site. If Cas9 targets 
a coding exon, indel mutations can result in a frameshift mutation and a premature 
stop codon, thereby knocking out the target gene expression. If Cas9 targets an 
intron, enhancer, or other noncoding region, mutagenesis can disrupt functional ele-
ments such as transcription factor binding motifs or chromatin anchoring sites, 
which can alter regulation of gene expression.

CRISPR forward genetic screens take advantage of the same genome editing 
machinery to pair many different genetic changes with a phenotypic assay [6, 7]. 
Specifically, the screen quantifies which genetic manipulations are enriched or 
depleted in a disease-relevant phenotype. The workflow for CRISPR screens can be 
summarized in five steps: (1) choose genomic regions or genes of interest and 
design a sgRNA library to target these elements, (2) generate cell populations with 
various genetic perturbations introduced through this sgRNA library, (3) select a 
biological phenotype of interest, (4) trace back from the selected phenotype to its 
associated gene/genomic targets, and (5) confirm the function of the identified tar-
gets through additional validation studies [8].

CRISPR screens can be performed in either an arrayed or pooled format. In an 
arrayed CRISPR screen, each well receives one sgRNA delivered into all cells. In 
comparison, a pooled CRISPR screen can perturb thousands of genes simultane-
ously—with each cell in the pool receiving one genetic perturbation. This is most 
often achieved via lentiviral delivery of the CRISPR library to a large cell pool. 
Each construct in the pooled lentiviral library contains a unique sgRNA. To ensure 
that each cell only receives a single CRISPR construct, the viral titer is adjusted 
such that the multiplicity of infection is less than 1 (i.e. fewer viral particles than 
cells). Successful genomic integration of the virion results in expression of the 
sgRNA in a Cas9-expressing cell line. Alternatively, both sgRNA and Cas9 nuclease 
can be packed into the same virion to infect wild type cell lines. To remove non-
transduced cells, the construct also includes a selectable marker such as drug resis-
tance or fluorescence. After lentiviral integration, the unique 20 nt sgRNA guide 
sequence serves as a barcode for the construct. This barcode is used to measure 
enrichment or depletion of the specific sgRNA after phenotypic selection. Significant 
enrichment or depletion of a sgRNA barcode suggests functional association 
between the sgRNA target locus and the phenotype of interest. To reduce false-
positive hits, genes/genome target regions should be validated with newly-designed 
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sgRNAs that are not in the original library. Validation of individual sgRNAs should 
also include analysis of indels (e.g. Surveyor/T7E1, sequencing, etc.) and/or gene 
expression changes (e.g. qPCR, quantitative protein blotting, etc.). After initial hit 
validation, further in-depth studies may involve genetically-engineered mouse mod-
els, perturbations of related genes in the same pathway, and validation across a panel 
of cell lines to examine the effects of genetic background.

7.2.2  �Types of CRISPR Screens

CRISPR screens to date have mainly focused on applying CRISPR nuclease 
(CRISPRn) Cas9 to identify loss-of-function mutations in protein-coding genes 
associated with disease traits. In addition to their use as a targeted nuclease, 
CRISPR systems have also been deployed as a general DNA-targeting platform to 
bring new effector domains to specific regions of the genome [9–11]. Beyond Cas9, 
there are also exciting possibilities for applying other DNA and RNA targeting 
CRISPR systems to take advantage of the metagenomic diversity of CRISPR sys-
tems [12]. These different CRISPR systems and effector domains can greatly diver-
sify the genetic manipulations available for screening gene loci and noncoding 
regions.

There is a variety of effector fusions that have been developed to activate or 
repress gene expression. Gene repression via effector domains is distinct from 
nuclease-based gene loss-of-function. Cas9 nuclease targeting typically results in 
loss-of-function due to formation of indel mutations in coding exons and nonsense-
mediated decay of mRNA transcripts. In contrast, CRISPR interference (CRISPRi) 
screens use a deactivated Cas9 (dCas9) fused to a Krüppel-associated box domain 
(KRAB) repressor [13]. Deactivated Cas9 (via alanine mutagenesis of a catalytic 
residue in the nuclease domain) retains the ability to form Cas9-sgRNA complexes 
that bind target sites [14]. The KRAB repressor is one of the most commonly used 
effectors for gene repression. Once at the target site, KRAB recruits nuclear pro-
teins to form a heterochromatin complex that can facilitate histone methylation and 
deacetylation [15]. CRISPRi screens using dCas9-KRAB have been applied to 
study protective factors in cellular toxin-resistance [16] and identify regulatory ele-
ments in the vicinity of oncogenes such as GATA1 and MYC [17]. For upregulating 
gene expression, there are three major types of dCas9-based gene-activating 
approaches (CRISPRa): tethering dCas9 directly with one or multiple activators 
(dCas9-VP64 [18, 19], dCas9-VPR [20], dCas9-P300 [21], and dCas9-VP160 
[22]); engineering a polypeptide scaffold to dCas9 for tagging multiple activator 
copies (Suntag [23]); modifying sgRNA scaffold hairpin region to recruit activators 
(SAM [24] and others [25]). A recent comparison of dCas9 activators found that 
activators with multiple, distinct activation domains (dCas9-VPR, SAM and Suntag) 
were capable of higher and more robust gene activation compared to effectors with 
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a single type of domain (e.g. dCas9-VP64, which contains four tandem repeats of 
the VP16 domain) [10].

In addition to gene activation and repression, other effectors have been incorpo-
rated into CRISPR systems to manipulate DNA methylation, histone acetylation 
and base editing. DNA methylation is catalyzed by DNA methyltransferases (Dnmt) 
and typically results in gene silencing [26] whereas DNA demethylation is facili-
tated by ten-eleven translocation (TET) dioxygenases and can result in gene activa-
tion [27]. Catalysts of DNA methylation and demethylation can be fused with 
dCas9, such as dCas9-Dnmt3a and dCas9-Tet1 respectively, and have been used to 
precisely edit CpG methylation [27]. Recent studies have shown that DNA methyla-
tion correlates with certain neuropsychiatric disorders such as schizophrenia, Rett 
syndrome, and immunodeficiency-centromeric instability (ICF) syndrome [26]. 
CRISPR screen effectors dCas9-Dnmt3a or dCas9-Tet1 could be used to identify 
regions of the genome that harbor control elements sensitive to changes in methyla-
tion. In addition to DNA methylation, post-translational modifications to histone 
tails can also modulate gene expression. Fusing the catalytic unit of acetyltransfer-
ase to dCas9 can robustly activate gene expression by catalyzing acetylation of his-
tone H3 lysine 27 at enhancer/promoter sites [21]. Additionally, the base pair editing 
tool dCas9-cytidine deaminase fusion protein has been used for making C to T (or 
G to A) point mutations [28]. Another point mutation generator system: “CRISPR-X” 
used dCas9 and a modified sgRNA with two MS2 hairpins to recruit a cytidine 
deaminase [29]. These systems can act as re-purposed CRISPR screens to provide 
alternatives to the kinds of mutations that result from CRISPRn-driven NHEJ.

Recently, pooled screens that pair CRISPR nucleases with multiple guides have 
been used to analyze multi-gene interactions and larger deletions. To study noncod-
ing elements such as long noncoding RNAs (lncRNAs) or super-enhancers, pairs of 
sgRNAs can create deletions that span the beginning and the end of larger genomic 
regions. A deletion screen targeting multiple long noncoding RNAs successfully 
demonstrated targeted genomic deletions to pinpoint regulatory lncRNAs associ-
ated with liver cancer [30]. For higher-resolution tiling in the noncoding region, 
single sgRNA saturation mutagenesis has been particularly helpful in identifying 
functional elements such as transcription binding motifs [31]. A saturating-muta-
genesis screen targeting ~700  kb region surrounding drug resistance genes has 
uncovered regulatory elements in a melanoma model [32]. Another study utilized 
a saturating-mutagenesis library to examine ~300  kb region in HBS1L-MYB 
intergenic region and identified putative enhancer elements that regulates MYB 
expression, which in turn regulates fetal hemoglobin levels [33]. Multi-guide 
screens have also been used to search for loss-of-function gene interactions or coop-
erative regulatory networks [34].

In addition to different effectors, CRISPR screens can benefit from the abun-
dance and diversity of CRIPSR-based DNA-targeting/gene editing systems found in 
different microbial species. Recent work on the CRISPR effector Cpf1, which rec-
ognizes T-rich PAMs [35, 36], suggests a new screening option for targeting T-rich, 
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NGG-poor regions. Since Cpf1 processes its own repeat array through its ribonucle-
ase activity, it may be easier to multiplex guide RNAs [37] for examining coopera-
tive regulation and deletions. To further expand the screening target from genome to 
transcriptome, the recently discovered RNA editing Cas9-C2c2 [38, 39] could be 
deployed to discover functional elements in regulatory RNAs or perform strand-
specific screens.

7.3  �CRISPR Screen Applications: Genetic Mechanisms 
of Human Disease and Therapeutic Development

7.3.1  �CRISPR Screens in Cancer for Synthetic Lethality 
and Drug Resistance

Over the past few years there has been tremendous excitement surrounding preci-
sion medicine approaches for the treatment of diverse cancers [40, 41]. Despite this 
excitement, there are still many aspects of cancer genetics and therapeutic resis-
tance that are poorly understood. CRISPR screens for cancer functional genomics 
fall broadly into three major categories: (1) understanding synthetic lethality and 
identifying potential new therapeutic targets through screening for cancer- and 
stage-specific dependencies; (2) finding genes that drive resistance or sensitivity to 
existing targeted therapies; (3) identifying noncoding regulatory elements that influ-
ence oncogene expression to provide alternative targeting options in cases where the 
oncogene itself may not be druggable.

7.3.1.1  �Identifying Cancer-Specific Vulnerabilities

Due to different underlying mutational processes and genome instability, cancer 
cells often evolve different genomic signatures during cancer progression. 
Characterizing cancer-specific vulnerabilities requires finding mutated proteins or 
gene expression programs that are essential to proliferation. These identified targets 
can be candidates for developing targeted therapy.

By applying genome-scale CRISPRn to multiple cancer cell lines, several groups 
have identified shared essential (core) genes across different cancer types [42, 43]. 
For each tumor cell line, we can define context-specific fitness genes by subtracting 
shared essential (core) genes from all essential genes for that tumor. One recent 
study comparing four cancer types discovered several context-specific fitness genes 
in glioblastoma, colorectal carcinoma, cervical carcinoma and melanoma [43]. 
Intriguingly, two different colorectal carcinomas displayed distinct vulnerabilities, 
highlighting the potential for using a genome sequencing and/or functional genomic 
screens to stratify patients.
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For rare tumors, combining CRISPR screens with patient-derived in vitro models 
can be helpful for correlating functional genomic data with known pathological 
features and specific genetic mutations (germline or somatic). In a recently estab-
lished patient-derived cell line for a rare undifferentiated sarcoma, multiple screen-
ing approaches (CRISPRn, RNA interference and pharmacologic screens) converged 
on CDK4 (a cyclin dependent kinase) and XPO1 (a protein involved in nuclear 
transport) as potential therapeutic targets [44]. One powerful aspect of this study 
was that the intersection of all three different screen modalities was used to build 
greater confidence in the genetic hits, suggesting a novel approach to pooled screen 
validation. In addition to patient-derived in vitro models, in vivo mouse models have 
also been employed to understand specific mutations and to characterize multi-cell 
interactions, such as primary tumor growth and distal organ metastasis. In one type 
of in vivo CRISPRn screen, tumor cells are transduced ex vivo with a lentiviral 
sgRNA library and then the mutant cell pool is transplanted into immunocompro-
mised (or syngenic) mice. Using this approach, a study identified loss-of-function 
mutations that contribute to primary tumor growth and cancer metastasis in vivo by 
separately analyzing enriched sgRNA targets in different organs [45]. The identified 
mutations included both well-established tumor suppressor genes, microRNAs 
(miRNAs) and several novel drivers of metastasis. It was shown that mutations that 
drive lung metastasis also stimulate primary tumor growth, suggesting that these 
events are tightly linked for many genetic driver mutations [45]. Another type of in 
vivo CRIPSRn screen delivered a sgRNA library using the piggyBac transposase 
and identified novel tumor suppressor genes associated with liver tumorigenesis 
[46]. Since it can be challenging with non-virally delivered transposase to limit 
genomic integration to only a single sgRNA per cell, secondary validation of screen 
hits is essential to confirm their roles in tumorigenesis.

7.3.1.2  �Understanding Mechanisms of Drug Resistance

A major obstacle for targeted therapy is drug resistance: When patients are treated 
with drugs targeting specific oncogenes (such as BRAF in melanoma or EGFR in 
non-small cell lung cancer), they often develop resistance to treatment [47]. 
Genome-wide CRISPRa and CRISPRn screens identified gain-of-function and loss-
of-function mutations in BRAF inhibitor-resistant melanoma, and loss-of-function 
mutations in etoposide-, cytosine arabinoside (Ara-C)- or ATR kinase inhibitor-
resistant myeloid leukemias [6, 7, 48, 49]. A genome-wide CRISPRa screen for 
BRAF inhibitor resistance in melanoma identified potential targets for direct phar-
macological inhibition [24]. This highlights a key difference between CRISPRa 
(gain of function) and CRISPRn (loss of function) approaches. For gain-of-function 
hits from a CRISPRa screen, it is possible to test established target-specific drugs. 
In cases where a direct inhibitor is not available, cell lines containing the mutation 
(or engineered to carry it) can be challenged using a high-throughput drug screen of 
novel compounds.
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For loss-of-function CRISPRn screens, it can be more challenging to translate 
screen hits into drug targets/strategies. For example, a CRISPRn screen identified 
CDC25A loss-of-function as driver of resistance to ATR kinase inhibition in acute 
myeloid leukemia (AML) [49]. A WEE1 (G2 checkpoint kinase) inhibitor could 
restore the ATR inhibitor’s efficacy in the resistant cells by forcing mitotic entry in 
CDC25A-deficient cells [49]. Another approach for overcoming drug resistance is 
to identify multi-gene synthetic-lethal interactions, where resistance stemming 
from a single loss-of-function mutation is reversed by a second loss-of-function 
mutation (synthetic lethality). One recent CRISPRn screen evaluated synthetic 
lethality by delivering two sgRNAs to mutate two genes simultaneously [50]. The 
study attempted to test 1.4 million possible synthetic-lethal interactions among 73 
cancer genes and identified a total of 152 successful pairs demonstrating synthetic 
lethality. In subsequent combinatorial drug validation studies, the researchers vali-
dated roughly 75% of the synthetic lethal combinations discovered. Synergistic 
cytotoxicity identified in CRISPRn screens can be quite informative and can pro-
vide a roadmap for downstream combinatorial drug studies. Similarly, CRISPRa 
screens can also capitalize on multi-gene targeting to identify resistance genes for 
combinatorial inhibition.

7.3.1.3  �Examining Noncoding Regulators of Cancer Gene Expression

In addition to protein-coding genes themselves, there are many regions of the non-
coding genome involved in the regulation of protein-coding gene expression. 
CRISPRi was used to identify nine distal enhancers within 1 megabase of sequences 
near MYC and GATA1 oncogenes [17]. MYC is a common oncogenic driver in many 
different cancers [51] and thus mapping enhancer elements that might increase 
MYC expression is important for identifying potential therapeutic targets. 
Additionally, noncoding regulators in T-cell exhaustion was studied with a CRISPRn 
saturating mutagenesis screen [52]. The study mutated all possible sgRNA sites of 
nine regulatory sequences near the Pdcd1 gene which codes for programmed cell 
death protein 1 (PD-1). In the context of cancer immunotherapy, PD-1 inhibition 
has been approved for a wide variety of different malignancies [53]. By correlating 
functional regions with putative transcription factor binding motifs, the study sug-
gests possible upstream therapeutic interventions to inhibit immune checkpoint 
pathways. In general, CRISPR screens can be adapted to detect immune check-
points or regulatory elements of those checkpoints, providing immunotherapeutic 
strategies to block T cells from being deactivated by tumor cells. Besides targeting 
enhancer binding sites, CRISPR screens utilizing saturating mutagenesis or deletion 
can also detect various other types of oncogenic regulators including long noncod-
ing RNAs (lncRNAs) [30], microRNAs (miRNAs) [54], and other important non-
coding regions such as introns and untranslated exons [55].
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7.3.2  �CRISPR Screens in Infectious Disease

Pathogenic organisms such as bacteria, parasites, and viruses present a major prob-
lem for human health around the globe [56]. Pooled CRISPR screens have provided 
insight into host-pathogen interactions by identifying host factors that facilitate or 
resist pathogen infections and intrinsic pathogen factors that enhance infection.

Identifying host factors that contribute to pathogenicity is an important step in 
understanding toxicity and treating bacterial infections. CRISPR screens for host-
bacterial interactions tend to focus around two key areas: resistance and sensitizing 
factors. By treating gene-edited cell pools with bacterial toxins or infectious patho-
gens, researchers can identify resistance and sensitizing factors through analysis of 
significantly enriched or depleted genes, respectively. For instance, to study host 
resistance factors against diphtheria and anthrax toxin, a targeted screen of ~300 
genes (including cell surface proteins, and proteins involved in endocytosis, traf-
ficking and cell death) identified four enriched cell-surface receptor genes (PLXNA1, 
FZD10, PECR and CD81) that confer resistance [57]. Upregulation of genes 
involved in resistance might protect cells from intoxication. On the other hand, 
sensitizing factors that facilitate infection can also provide mechanistic insight to 
pathogenesis. For example, studies have shown that Vibrio parahaemolyticus 
employs two type III secretion systems (T3SS) to inject its payload [58]. A genome-
wide CRISPRn screen in human intestinal epithelial cells used a modified Vibrio 
pathogen where either T3SS was removed to identify protein modification path-
ways for pathogen entry that are specific to each T3SS [59]. Down regulation of 
host factors might provide alternative paths to mitigate cytotoxicity in pathogen 
infections.

Similarly, to understand specificity of viral-host interaction, multiple CRISPR 
screens have been used to identify receptors for viral entry and necessary cellular 
components for viral replication in host cells. Host interactions with flaviviruses 
and retroviruses are two key examples. Flaviviruses are a family of arboviruses that 
includes West Nile, Dengue, Zika, and Hepatitis C virus [60–62]. A genome-wide 
CRISPRn screen revealed seven protective genes in the endoplasmic reticulum 
associated protein degradation (ERAD) pathway, where loss-of-function confers 
resistance to West Nile virus-induced cell death but does not block viral replication 
[63]. To look for shared replication facilitators in host cells, a second genome-wide 
screen identified and validated signal peptidase complex 1 (SPCS1) as key require-
ment for flavivirus replication [64]. For viral specific host factors facilitating viral 
replication, a third genome-wide screen discovered distinct host-dependency fac-
tors required for Dengue or hepatitis C virus [65]. Identification of these novel host 
factors provides new avenues for developing specific antiviral therapies. In addition 
to flaviviruses, CRISPR screens have also provided insight into retroviruses, such as 
human immunodeficiency virus (HIV). Although the entry receptors for HIV have 
been well-characterized (e.g. CCR5 and CXCR4), a genome-wide CRISPRn screen 
discovered several new dependencies, including tyrosylprotein sulfotransferase 2 
(TPST2) and solute carrier family 35 member B2 (SLC35B2) [66]. These two 
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proteins function in a common pathway to sulfate CCR5 so that it can be recognized 
by HIV. Loss of either of these proteins and the modifications they impart to CCR5 
results in strong protection against HIV, suggesting further targets for controlling 
viral load.

Relatively few CRISPR screens have been performed in pathogens themselves 
compared to screens in host organisms. Intrinsic pathogen factors contribute to 
severity of infections and a classic example is the acquisition of antibiotic resis-
tance. Studies have shown that carbapenem-resistant Enterobacteriaceae [67] and 
methicillin-resistant Staphylococcus aureus [68] are resistant to nearly all available 
antibiotics, suggesting that novel antibiotics or treatment options are urgently 
needed for combating antibiotic-resistant bacterial infections. CRISPR screens can 
be implemented to characterize new antibiotics and their mechanisms of action. For 
example, to test a novel antibiotic MAC-0170636, a CRISPRi screen analyzed all 
essential genes in Bacillus subtilis, and identified undecaprenyl pyrophosphate syn-
thetase (uppS), an essential molecule in construction of the bacterial peptidoglycan 
cell wall, as a key target for the antibiotic [69]. In addition to antibiotic resistance in 
bacteria, CRISPR screens have been extended to examine intrinsic factors in other 
types of pathogens, such as parasites. Apicomplexan parasites are one of the leading 
causes of human parasite infections such as malaria and toxoplasmosis [70]. A 
recent study used a CRISPRn screen to target all ~8000 protein-coding genes in 
Toxoplasma gondii [70]. The study defined roughly 200 previously uncharacterized 
fitness genes and identified the claudin-like apicomplexan microneme protein 
(CLAMP) as an invasion factor in the initiation of infection [70]. CLAMP is essen-
tial for parasite infection in fibroblast cells. In malaria, CLAMP knockdown blocks 
the asexual cycle of the parasite, indicating that insights from the pooled screen 
could potentially transfer to other pathogens in the Apicomplexan phylum [70].

7.3.3  �CRISPR Screens for Understanding and Treating Inborn 
Genetic Disorders

Inborn genetic disorders are diseases caused by inherited or de novo mutations that 
affect early development. In this area, CRISPR screens have been used to find regu-
lators of hemoglobin switching and novel treatments for mitochondrial disorders.

Hemoglobin disorders, such as beta-thalassemia and sickle-cell anemia, are rela-
tively common. There are >300,000 births each year with severe forms of these 
diseases, which result from defects in the adult form of hemoglobin (β-globin) [71]. 
In early development, an alternative, fetal form of hemoglobin is the dominant oxy-
gen carrier. In patients with β-globin defects, it has been shown that natural variants 
that result in expression of fetal hemoglobin (HbF) prevent severe forms of the 
disease [72]. Through human genetics association studies, the transcriptional repres-
sor BCL11A was found to block expression of HbF. Using a CRISPRn screen in an 
intron of BCL11A, an erythroid-specific enhancer region was identified [31]. 
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Mutagenesis of the enhancer phenocopies knock-out of BCL11A and results in 
re-activation of HbF. For therapeutic gene editing, this erythroid-specific enhancer 
might be a preferred target since it only reduces BCL11A expression in erythroid 
lineages. A second study by the same group targeted a noncoding region surround-
ing HBS1L-MYB, which contains single-nucleotide polymorphisms associated with 
HbF levels and other red blood cell traits. They identified several regulatory ele-
ments in this region that control MYB expression, which also regulates HbF [33]. 
Taken together, these screens have identified several different regulatory elements 
that are essential to the expression of different forms of hemoglobin. For patients 
with hemoglobin diseases, these studies suggest specific noncoding targets for ther-
apeutic gene editing and also specific regulatory genes that could be inhibited with 
small-molecule drugs.

Mitochondrial disorders encompass a set of diseases that stem from dysfunc-
tions of the mitochondrial respiratory chain [73]. Over 150 genes have been identi-
fied in mitochondrial disease, making it the largest class of inborn errors of 
metabolism. Despite this genetic diversity, most of the current therapeutic strate-
gies utilize broad vitamin supplementation with limited efficacy [74]. A genome-
wide CRISPRn screen used death screening (actively selecting dead cells via 
Annexin V staining) to identify genes linked to mitochondrial disorders [75]. The 
study identified 191 genes that already known to play a role in oxidative phos-
phorylation as well as a handful of previously uncharacterized genes (NGRN, 
RPUSD3, RPUSD4, TRUB2, WBSCR16, PYURF, METTL17, TMEM261, N6AMT1) 
[75]. Other studies have focused on identifying specific targets in the oxidative 
phosphorylation pathway to find new therapeutic approaches. A genome-wide 
CRISPRn screen in a cell line where respiratory chain function was impaired 
(either by antimycin or pyruvate removal) identified the Von Hippel-Lindau (VHL) 
factor as a potential suppressor of mitochondrial disease. VHL was previously 
described as a key regulator of cellular hypoxic response, linking the hypoxia path-
way with mitochondrial metabolism [76]. The protective effects of VHL knock-out 
was further validated in vivo in zebrafish. In a mouse model of Leigh syndrome, 
hypoxia treatment ameliorated a respiratory chain defect in which complex I is 
disrupted and extended lifespan by over threefold [74]. A separate study combined 
a chemical screen with a genome-wide CRISPRn screen to identify factors that 
could rescue defects in complex I of the mitochondrial respiratory chain. The 
chemical screen identified I-BET 525762 as a bromodomain protein inhibitor, and 
the CRISPRn screen revealed that the target of the inhibitor was the bromodomain 
containing protein 4 (BRD4) [77]. Ablating BRD4 increases oxidative phosphory-
lation and, here, the complementary drug screen provided additional support for 
this hit. Both screens suggest that inhibiting the activity of BRD4 might help the 
mitochondria compensate for defects in complex I. Overall these studies highlight 
the potential for new therapeutic approaches and demonstrate that mitochondrial 
disorders require treatments to be tailored for specific genetic lesions or specific 
impairments to respiratory chain complexes.
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7.4  �Conclusion and Future Perspectives

In order to develop new therapies for complex diseases, a key challenge is to 
identify genes and other functional elements in the genome involved in pathogene-
sis. With new targeted gene editing technologies, large-scale, pooled genetic screens 
in human cells are significantly easier than with alternative approaches (e.g. trans-
posons, retroviral insertion, chemical mutagenesis). To date, most pooled screens 
have focused on probing one target per cell but future screens can take advantage of 
multiplexing to probe multiple genome targets in a combinatorial fashion. 
Combinatorial approaches can be useful in cancer and infectious disease in the con-
text of synthetic lethality to identify optimal multi-drug cocktails, and also in inborn 
genetic disorders to identify background-specific modifiers for disease severity and 
therapeutic efficiency. With respect to precision medicine, future CRISPR screens 
could be performed in patient-derived cell lines to identify targets specific to the 
patient genetic background or to perturb specific gene variants.

In addition to gene targets, there is tremendous interest in understanding how non-
coding regulatory regions influence gene expression, given that most common-dis-
ease-associated variants are in noncoding regions [78]. A key problem going forward 
for high-throughput pooled screens is to find screenable (cell autonomous) pheno-
types for complex diseases. Traditionally, pooled screens have employed survival 
phenotypes (e.g. resistance to a drug or a pathogen) but many disease-relevant pheno-
types are subtle or difficult to analyze in a pooled format. Despite these challenges, 
new advances in CRISPR pooled screening, such as recent work to combine pooled 
editing with single-cell readouts of RNA, DNA or genome state [79–83], deletions to 
perturb larger regions of the genome [30, 84], and new effector domains for manipu-
lating epigenetic states [11, 27], will improve our understanding of the genetic basis 
of disease and help identify new therapeutic targets for treating these diseases.
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