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SUMMARY

Recent studies have shown that mutations at non-
coding elements, such as promoters and enhancers,
can act as cancer drivers. However, an important
class of non-coding elements, namely CTCF insula-
tors, has been overlooked in the previous driver ana-
lyses. We used insulator annotations from CTCF and
cohesin ChIA-PET and analyzed somatic mutations
in 1,962 whole genomes from 21 cancer types. Using
the heterogeneous patterns of transcription-factor-
motif disruption, functional impact, and recurrence
of mutations, we developed a computational method
that revealed 21 insulators showing signals of posi-
tive selection. In particular, mutations in an insulator
in multiple cancer types, including 16% of melanoma
samples, are associated with TGFB1 up-regulation.
Using CRISPR-Cas9, we find that alterations at two
of the most frequently mutated regions in this insu-
lator increase cell growth by 40%–50%, supporting
the role of this boundary element as a cancer driver.
Thus, our study reveals several CTCF insulators as
putative cancer drivers.

INTRODUCTION

Whole-genome sequencing (WGS) of tumors has revealed that

most somatic mutations occur in non-coding regions (Khurana

et al., 2016). Although most of these mutations do not impact tu-

mor growth and are called passengers, some of them can act as

cancer drivers by conferring growth advantage to promote

tumorigenesis. Non-coding cancer driver mutations can be iden-

tified by detecting signals of positive selection in WGS data.
Cell Systems 8, 1–
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Non-coding drivers at transcription factor (TF)-binding sites in

promoters and enhancers play a role in tumorigenesis by dysre-

gulating gene expression. The most prominent example is the

TERT promoter, which is mutated in many cancers (Vinagre

et al., 2013). In other prominent examples, promoter and

enhancer mutations in breast cancer can lead to FOXA1 (Rhein-

bay et al., 2017) and ESR1 (Bailey et al., 2016) overexpression,

respectively. Most efforts to identify cis-regulatory regions under

positive selection in cancer have focused on promoters and

enhancers and a key functional element, namely CTCF-cohesin

insulators, has been overlooked.

It is known that promoter and enhancer interactions are facili-

tatedbypartitioningof thehumangenome intoDNA loops (Gibcus

and Dekker, 2013; Gorkin et al., 2014; Rao et al., 2014). The loops

that act as insulated neighborhoods preventing the interactions of

promoters and enhancers across their boundaries are predomi-

nantly mediated by CCCTC-binding factors (CTCFs) and cohesin

(SMC1, SMC3,RAD21, and either STAG2 or STAG1) bound at the

loop ends (Dowen et al., 2014; Hnisz et al., 2016; Ji et al., 2016;

Tang et al., 2015). Emerging evidence from genome-wide exten-

sion of chromosome conformation capture (Hi-C) and chromatin

immunoprecipitation sequencing (ChIP-seq) assays suggests

that other proteins, such as BRD2 (Hsu et al., 2017) and ELK4

(Mourad and Cuvier, 2018), can also co-localize with CTCF at

loop anchors to affect long-range chromatin interactions. Disrup-

tion of the loop anchor regions, called CTCF-cohesin insulators

(hereafter referred to as insulators), can lead to de novo

enhancer-promoter interactions and the subsequent dysregula-

tion of associated genes (Giorgio et al., 2015; Lupiáñez et al.,

2015). Furthermore, smaller loops can cluster to form larger meg-

abase-sized loops called topologically associated domains

(TADs) (Bouwman and de Laat, 2015; Phillips-Cremins et al.,

2013; Rao et al., 2014; Vietri Rudan et al., 2015).

It has been previously reported that CTCF-cohesin-binding

sites are highly mutated in several cancer types, including

gastrointestinal cancers and melanoma (Guo et al., 2018;
10, May 22, 2019 ª 2019 The Authors. Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Kaiser et al., 2016; Katainen et al., 2015; Poulos et al., 2016).

Although the reasons for the high mutation rates are not

completely understood, these studies noted that most of these

mutations are likely passengers and do not drive tumor growth.

However, Hnisz et al. found the CTCF insulators of DNA loops

show recurrent deletions that alter the expression of LMO2

and TAL1 oncogenes in T cell acute lymphoblastic leukemia

(Hnisz et al., 2016). Thus, some variants at insulators may have

a functional role and drive the growth of cancer cells. It is well

appreciated that systematic genome-wide identification of a

few drivers among tens of thousands of passengers is a chal-

lenging task. This is because computational methods to detect

drivers need to account for heterogeneous mutation rates along

the genome. The heterogeneous rates are a result of mutational

co-variates, some of whichmay be specific for the type of cancer

and functional element analyzed (Cuykendall et al., 2017; Khur-

ana et al., 2016; Perera et al., 2016; Polak et al., 2015; Sabarina-

than et al., 2016; Supek and Lehner, 2015). While several

methods have been developed to predict non-coding drivers

at promoters, enhancers, or TF-binding sites in general in multi-

ple cancer types (Araya et al., 2016; Juul et al., 2017; Lanzós

et al., 2017; Lochovsky et al., 2015; Melton et al., 2015; Mularoni

et al., 2016), these methods have not been developed for or

applied on insulator regions.

Here, we first analyze the mutations at insulators to identify

novel mutational rate co-variates at these regions. We used insu-

lator annotations obtained using chromatin interaction analysis

with paired-end tag sequencing (ChIA-PET) assays that can

map long-range chromatin interactionsmediated by specific pro-

teins and therefore enable identification of chromatin loop anchor

regions that are associated with CTCF and cohesin (Heidari et al.,

2014; Hnisz et al., 2016; Ji et al., 2016; Tang et al., 2015). We then

developed a computational method, Cornell Non-Coding Driver

(CNCDriver), that incorporates the mutational rate co-variates to

identify insulator drivers. Out of 5,042 insulators that show recur-

rent mutations (i.e., present in 2 or more samples) in 1,962 whole

genomes from 21 cancer types, our method identifies 21 putative

drivers. We postulate that alterations of these insulators can elicit

oncogenic impact via chromatin loop rewiring. Functional valida-

tion of a predicted driver using CTCF ChIP-seq, chromosome

conformation capture (3C), and CRISPR mutagenesis supports

our computational predictions in human melanoma cells.

RESULTS

Determining Mutational Rate Co-variates at Insulators
Analysis of loop anchor regions fromseven cohesin (Heidari et al.,

2014; Hnisz et al., 2016) and CTCF (Li et al., 2012a; Tang et al.,

2015) ChIA-PET datasets shows that the majority of them are

conserved inmore than one cell-type (Figure S1B, 73% insulators

are conserved in more than one cell type), as also noted by pre-

vious studies (Heidari et al., 2014; Hnisz et al., 2016; Tang et al.,

2015). We only include those insulators that are conserved in at

least four out of five different cell types (GM12878, K562, Jurkat,

MCF-7, and HeLa-S3) as the constitutive set in our analysis. We

analyzed the patterns of somatic single-nucleotide variants

(SNVs) in 1,962 genomes from 21 cancer types (Table S1) at

constitutive insulators. We identified the mutations predicted to

disrupt CTCF binding by comparing the TF motif position weight
2 Cell Systems 8, 1–10, May 22, 2019
matrix (PWM) score of the mutated versus the reference

sequence (Fu et al., 2014; Khurana et al., 2013; Mu et al., 2011)

(Figure S2A; Table S14). We observe significant enrichment of

CTCF motifs predicted to be disrupted because of mutations in

15 out of 21 cancer types analyzed (Figure S2B). Next, we ex-

tracted the tri-nucleotide context of the mutations predicted to

disrupt CTCF motifs and compared the distributions of the 96

possible contexts with known signatures ofmutational processes

in human cancer from the catalogue of somatic mutations in can-

cer (COSMIC) (Alexandrov et al., 2013) as a reference control us-

ing cosine similarity as the quantitative metric (Figures S2C and

S2D). We find that the tri-nucleotide distributions for CTCF-

motif-disrupting mutations vary considerably across cancer

types and interestingly match the corresponding cancer-specific

COSMICmutational signatures in 9 cancer types (Figure S2D). As

seen in Figure S2B, these 9 cancer types are also enriched for

CTCF-motif disruption. Thus, our results show that enrichment

of CTCF-motif disruption in multiple cancer types is likely

because of neutral mutational processes operative in those can-

cers. For the remaining 6 cancer types that show enrichment of

CTCF-motif disruption, but do not closelymatch any singlemuta-

tional signature identified in that cancer type, we expect the

motif-disrupting mutations are likely either a combination of mul-

tiple signatures or may correspond to unknown signatures of

longer sequence context (Fredriksson et al., 2017). Besides

CTCF, we find that the fraction of the other 549 TFs, whose

motif-disruption enrichment can be explained by known muta-

tional processes acting in that cancer type, varies from 4% in

brain low-grade glioma (LGG) to 86% in melanoma (Table S2B,

top). We provide the lists of TFs showing enriched motif disrup-

tion because of specific mutational signatures for each cancer

type (Tables S2A and S2B). Our observations are consistent

with those of Kaiser et al., who noted that enrichment of func-

tional mutations at binding sites of CTCF and other TFs is likely

due to neutral mutational processes, though they did not make

a one-to-one comparison with the 30 mutational signatures

from COSMIC (Kaiser et al., 2016). Thus, these results demon-

strate that in the computational models for cancer driver detec-

tion at CTCF insulators, there is a need to balance the higher

functional impact of motif-disrupting mutations and their

higher frequency (Figure S3) because of background mutational

processes.

Computational Method to Identify Cancer Drivers
We report a novel computational method, CNCDriver, which

combines the functional impact of mutations and their recur-

rence across multiple cancer samples to identify the elements

that show signals of positive selection. CNCDriver aims to iden-

tify the regions that show significantly more functional mutations

than expected randomly. The functional impact of mutations is

computed using the FunSeq2 algorithm (STAR Methods)

(Dhingra et al., 2017; Fu et al., 2014; Khurana et al., 2013).

A CNCDriver score is computed for each element, which sums

the functional impact and recurrence of all the mutations in the

element (Figure 1A; STAR Methods). The p value for each

element is then computed by comparing its CNCDriver score

to the scores in a null distribution built by repeatedly drawing

the same number of mutated positions from the same element

type. This framework allows us to account for previously
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Figure 1. CNCDriver Method Overview and Results in Melanoma

(A) CNCDriver method. CNCDriver score (Sj) combines predicted functional impact scores (FSi) and recurrence (Wi) at eachmutated position in insulator j. p Value

for insulator j is estimated by comparing Sj with null distribution of (Sjk). Simulated CNCDriver scores (Sjk) are obtained by sampling n mutations from other

insulators accounting for mutational co-variates.

(B) Circos plot shows the fraction of mutated samples per insulator (light gray bars) in melanoma. Inset: (Top) Zoom-in shows the fraction of mutated samples for

chr19 and the two candidate insulator drivers identified by CNCDriver in light blue bars; (bottom): QQ plot shows the p value distribution and the two candidate

insulator drivers in blue.

(C) Predicted loop rewiring (red, original loop with significantly mutated anchor; gray, alternate constitutive loop; dotted, predicted new loop) at the site of a

candidate driver on chr19. Dark gray bars represent topological associated domains (TADs). Zoom-in needle plot shows the number of mutated samples at each

position in the candidate driver.

(D) Differential gene expression of TGFB1 andCYP2S1 between tumor sampleswith hotspot mutations (MUT) (n = 11) and thosewithoutmutations (WT) (n = 69) at

candidate insulator shown in (C). See STAR Methods for CNCDriver method details. See also Figures S1–S12 and Tables 1, S1–S15.

Please cite this article in press as: Liu et al., Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes, Cell Systems (2019), https://
doi.org/10.1016/j.cels.2019.04.001
reported co-variates of mutation rates, including replication

timing, mutational sequence context, DNase I hypersensitive

sites (DHSs), and histone modification marks (Alexandrov

et al., 2013; Polak et al., 2015). Besides insulators, it also allows

identification of drivers in coding genes, promoters, enhancers,

and lncRNAs. To identify the insulators under positive selection,

CNCDriver also incorporates the ratio of CTCF-motif-disrupting

to motif-preserving mutations in the null model, thus balancing

the opposite effects of predicted higher functional impact of

these mutations with their higher frequency (Figure S3; STAR

Methods).
Application of CNCDriver to coding regions demonstrates that

it identifies well-known cancer genes with improved perfor-

mance compared to other methods that are based solely on

mutational functional bias (Mularoni et al., 2016) or burden (Lo-

chovsky et al., 2015), demonstrating the validity of the statistical

framework (Figure S4; Table S3). Furthermore, the p values from

CNCDriver follow the expected uniform distributions for all

element types (Figures S4–S8; Tables S4–S11), and the well-

known TERT promoter is identified as a candidate in 3 cancer

types (Figure S5A). We note the unique scoring scheme of

CNCDriver, which includes nucleotide level impact of TF-motif
Cell Systems 8, 1–10, May 22, 2019 3



Table 1. CNCDriver Identified 21 Putative Insulator Drivers,

Related to Figure 1B

Insulator Coordinates Cancer Type

chr1:212,206,519-212,210,488 PanCancer

chr3:101,946,566-101,949,238 Liver

chr3:193,851,483-193,857,734 PanCancer

chr6:27,762,081-27,764,969 BLCA and

PanCancer

chr6:28,804,618-28,807,508 Ovarian

chr6:36,644,706-36,649,293 UCEC

chr6:52,859,174-52,860,790 PanCancer

chr6:73,119,843-73,123,728 ESAD

chr7:148,659,158-148,661,781 Renal

chr7:86,865,236-86,868,101 Ovarian

chr7:96,808,154-96,810,356 Colon and

PanCancer

chr8:114,448,350-114,451,616 ESAD

chr12:109,830,993-109,832,475 BRCA

chr10:103,602,281-103,604,334 UCEC

chr14:21,076,653-21,082,688 Pancreatic

chr16:22,206,566-22,208,078 BLCA and

PanCancer

chr16:22,307,639-22,310,495 Ovarian, Renal,

and PanCancer

chr17:8,021,414-8,027,560 PanCancer

chr19:12,901,682-12,905,667 Ovarian

chr19:17,969,769-17,971,490 Melanoma

chr19:41,767,305-41,771,623 Melanoma and

PanCancer

Hepatocellular carcinoma (Liver), bladder urothelial carcinoma (BLCA),

ovarian serous cystadenocarcinoma (Ovarian), uterine corpus endome-

trial carcinoma (UCEC), esophageal adenocarcinoma (ESAD), kidney

cancer (Renal), colon adenocarcinoma (Colon), breast invasive carci-

noma (BRCA), pancreatic adenocarcinoma (Pancreatic), and skin cuta-

neous melanoma (Melanoma).

Please cite this article in press as: Liu et al., Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes, Cell Systems (2019), https://
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disruption, allows prediction of candidate promoter drivers in

melanoma where OncodriveFML gives inflated QQ plots

because of hypermutated TF-binding sites (Khurana et al.,

2016; Mularoni et al., 2016; Perera et al., 2016; Sabarinathan

et al., 2016) (Figure S5B).

Putative Insulator Drivers Identified by CNCDriver
Using CNCDriver, we identify 21 putative insulator drivers across

individual cancer types and in the joint pan-cancer analysis

(Table 1; Figure S8A). We note that only 21 insulators are pre-

dicted to be under positive selection even though many insula-

tors show high mutational frequencies (Figure S9: gray bars in

circles for each cancer type). In contrast, OncodriveFML (Mular-

oni et al., 2016), a method that uses only mutational functional

bias to identify drivers produces high numbers of false positive

hits (Figure S8B; Table S12), likely because it does not account

for the higher background rates of CTCF-motif-disrupting muta-

tions associated with neutral processes. Other methods that use

only high mutational burden to detect positive selection are also

likely to perform poorly for CTCF insulators because of their
4 Cell Systems 8, 1–10, May 22, 2019
increased mutational rates relative to flanking regions (Lanzós

et al., 2017; Rheinbay et al., 2017; Weinhold et al., 2014).

Among all cancer types analyzed, ovarian cancer has the

maximum number of candidate drivers (i.e., four), while mela-

noma, esophageal, endometrial, renal, and bladder cancer

follow with two candidates each (Figure S9). We find that one

insulator candidate is common to both renal and ovarian can-

cers, while nine predicted drivers are identified in the joint pan-

cancer analysis. Among these nine insulators identified in the

pan-cancer analysis, four candidates are also detected to be

significantly mutated in single cancer types. The remaining five

candidate drivers identified via the pan-cancer analysis are likely

to be important in multiple cancer types, though they do not

reach statistical significance in individual cancer types because

of limited cohort sizes.

To further interpret the tumorigenic role of mutations at insu-

lator regions, we examined their clonality status. We performed

integrative analysis of tumor purity, copy number alterations

and read depth at mutated loci using an approach similar to

the one in previous studies (Landau et al., 2013; McGranahan

et al., 2015) (Figures S10A and S10B). We find that the majority

of mutations in both coding and non-coding drivers tend to be

clonal, likely pointing to their roles during the early stages of tu-

mor development (Figures S10C and S10D). This result is in

concordance with previous studies of coding driver genes from

TCGA (The Cancer Genome Atlas) whole-exome sequencing

data (McGranahan et al., 2015). However, the fraction of clonal

mutations in insulators (0.60) is significantly lower than that

observed in promoters (0.79) (p value = 0.049, Fisher’s exact

test) suggesting the possibility that mutations at insulators may

play a stronger role at later stages in cancer progression.

Predicted Rewiring of Chromatin Loops around
Insulator Drivers and Associated Genes
ChIA-PET assays provide the locations of paired loop anchors,

enabling the prediction of potential loop rewiring events associ-

ated with the perturbation of the anchor regions. Perturbation of

loops associated with mutations at the insulators may alter the

anchor contact frequency and hence the strength of loops in

the vicinity. Based on previous studies, the majority (�80%) of

the loop anchors bound by CTCF and cohesin contain CTCFmo-

tifs in convergent orientations (i.e., forward-reverse) (Hnisz et al.,

2016; Ji et al., 2016; Tang et al., 2015). This helps us to predict

how the mutations at insulators could alter the conformations

of the loops in the region leading to their rewiring.We determined

the potential rewiring events by requiring that new loops: (1)

contain convergent CTCF motifs at anchors within 360 kb of

each other (which corresponds to the 75th percentile of CTCF-

CTCF loop length distribution) and (2) if the predicted insulator

driver is located within a TAD, the predicted new loops will be

within the same TAD (Figures 1C and S11). For example, in Fig-

ure 1C, mutations at the driver insulator with the reverse CTCF

motif are predicted to weaken a constitutive loop (red), thereby

strengthening an alternate constitutive loop (gray) and a pre-

dicted new loop (dotted) through the pairing of the forward

CTCF motif with other reverse motifs in the vicinity.

We analyzed the genes whose expression may be altered due

to the loop rewiring events. 76 genes are located within the pre-

dicted weakened or strengthened loops associated with the
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around TGFB1

(A) Top: Loop conformation around the TGFB1

associated insulator. Constitutive loop with the

significantly mutated insulator (red), another

constitutive loop (gray), and a negative control

loop in chromosome conformation capture (3C)

assays (light blue) are shown. CTCF motifs located

at the two loop anchors have forward-reverse

orientation (faced arrows in black and white color).

Bottom: CTCF ChIP-seq validation in A375 mela-

noma cells. The zoom-in shows the corresponding CTCF peaks at loop anchors A, B, and C.

(B) 3C assays confirm the existence of constitutive CTCF-CTCF loops between two pairs of CTCF anchors that are 60 kb and 105 kb apart (red, loop A-B; gray,

loop A-C) in A375 melanoma cells. To compensate for relative interaction efficiency based on linear distance, looping of anchor A with a random region upstream

that was in closer linear distance than the downstream CTCF anchors (40 kb), was also interrogated (light blue, loop A-B0 ) as a negative control loop. K562

leukemia cells were used as a positive control and genomic DNA that was purified, digested, and ligated was used as a negative control. Relative enrichment of

all samples was normalized over intra-fragment PCR. Data are represented as mean ± SD. See also Figure S12.
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insulator drivers. Among these 76 genes, TGFB1, HES1, CUL1,

and CDKN2A are involved in curated cancer pathways (Figures

1C, S11C, S11K, and S11M) (Knijnenburg et al., 2018; San-

chez-Vega et al., 2018). Next, we asked whether these 76 genes

exhibit differential expression in patients with insulator mutations

versus those without. Since RNA sequencing (RNA-seq) data are

not available for the esophageal cancer samples analyzed in this

study (STARMethods), we were only able to analyze the expres-

sion of associated genes for 19 out of 21 significantly mutated in-

sulators. We found that the expression of two neighboring genes

is associated with mutations in one insulator driver candidate:

TGFB1 (in melanoma and pan-cancer analysis) and CYP2S1

(in melanoma) (Figures 1D and S12A). Thus, mutations in only

one out of 19 insulator candidates analyzed are associated

with differential expression of at least one gene (Benjamini and

Hochberg method for multiple hypothesis correction, Q value

% 0.1). We note that this result is likely due to the small number

of samples with matchedWGS and RNA-seq data in the majority

of cancer types. Themutational frequency of candidate drivers is

also lower in other cancer types relative to melanoma, which

further decreases the statistical power to detect significant dif-

ferences in gene expression. For example, matched WGS and

RNA-seq data are available for only 3 samples with mutations

and 93without for the candidate driver on chr12 in breast cancer,

while it is available for 12 samples with mutations and 68 without

for the candidate driver in melanoma.

The driver candidate (chr19:41,767,305-41,771,623) identified

in melanoma and in pan-cancer analysis where mutations are

associated with TGFB1 up-regulation (Figures 1B–1D and S12;

Table S13) is of particular interest. TGFB1 is involved in the trans-

forming growth factor b (TGF-b) signaling pathway and promotes

angiogenesis and tumor cell migration inmelanoma (Perrot et al.,

2013). We find that the mutation frequency of this insulator is

higher in metastatic (19%) than in primary samples (12%) (Fig-

ure S12F), which is consistent with the known role of TGFB1 in

melanoma metastasis (Javelaud et al., 2008; Padua and Mas-

sagué, 2009). Furthermore, this trend is even stronger when

analyzing the samples with recurrent mutations (since they are

likely the ones under stronger positive selection than non-recur-

rent mutations), with mutation frequency of 17% for metastatic

and 8% for primary melanoma samples (Figure S12F). Besides

melanoma, the TGF-b pathway is important in multiple cancer

types and is a target for drug development (Akhurst, 2017;
Seoane and Gomis, 2017). The mutations of this insulator in

other cancer types (lung adenocarcinoma, endometrial carci-

noma, prostate adenocarcinoma, and liver hepatocellular carci-

noma) and in particular the relatively high mutational frequency

of 9% in colon cancer and 3% in esophageal adenocarcinoma

may provide complementarymechanisms to the known genomic

alterations (protein-coding mutations and copy number alter-

ations) for modulation of TGF-b signaling, especially in gastroin-

testinal cancers (Korkut et al., 2018).

Functional Validation of Predicted Driver Insulator
Associated with Differential Expression of TGFB1

Weperformed functional validation for the tumorigenic role of the

predicted insulator driver (chr19:41,767,305-41,771,623) in mel-

anoma using multiple assays. We used human melanoma A375

cells and sequenced the insulator to verify the absence of muta-

tions. We performed CTCF ChIP-Seq in A375 cells to show that

the predicted driver (insulator B) is bound by CTCF (Figure 2A).

Next, we performed 3C to confirm the presence of the relevant

chromatin loop in melanoma (Figure 2B, loop A-B). We used

primers on CTCF insulator ‘‘A’’ and the insulators ‘‘B’’ and ‘‘C,’’

which form constitutive loops in the conserved annotations, as

well as a random non-insulator region B0 of similar linear distance

that served as a negative control (Figure 2A). Our results show

that the contact frequency of both A-B and A-C is significantly

higher than the negative controls (A-B0 and naked genomic

DNA) (Figure 2B) and at similar levels compared to K562 cells,

one of the cell lines in which these loops were initially detected

by ChIA-PET. These results validate the existence of the loop

A-B in melanoma cells and support that they potentially insulate

the enhancer activity from promoters outside the loops.

Six out of 48 mutations in this insulator are located within the

regions bound by CTCF (SNV4, 5, 19, 20, and 21 in Figure S12E),

while 39 out of 48 mutations occur at the ChIP-seq peaks of

other TFs. In particular, there are six hotspots (SNV8, 9, 11, 12,

14, and 18 in Figure S12E) where many TFs bind, including

ELK4 (Table S13). Among these six SNVs, SNV8

(chr19:41,769,771) is the most recurrent mutation with a muta-

tional frequency of 8% and is predicted to disrupt the ELK4

motif. Notably, by analysis of Hi-C data, Mourad et al. showed

that besides CTCF, ELK4 is one of the TFs that show a blocking

effect between long-range contacts in the genome (Mourad and

Cuvier, 2018). Besides ELK4, YY1 is another prominent TF
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(A) Guide RNA design in the chr19 insulator region B. Needle plot shows mutations observed in (B) and zooms in on the sequence surrounding two of the most

recurrent mutations in the region (SNV4 and SNV8). SNV4 is present in a CTCFmotif and SNV8 is present in an ELK4motif. Guide RNAs were designed to target 4

different positions (SNV4-1, SNV4-2, SNV8-1, and SNV8-2) surrounding SNV4 and SNV8. The guide RNAs are cloned into a lentiviral vector and transduced into

human melanoma A375 cells. Cell proliferation is compared over a 2-week period between SNV4- and SNV8-edited cells to control cells transduced with non-

targeting (NT) guide RNAs used as negative control. Deep sequencing readout characterizes the length of mutations in the selected cells.

(B) Editing efficiency of each CRISPR guide RNA targeting SNV4 and SNV8. Data are represented as mean ± SEM.

(C) Indel length distribution of each guide RNA that targets insulator region B.

(D) Cell growth increases 40%–50% in cells transduced with SNV4 and SNV8 guides. Data are represented as mean ± SEM. Cell count measurements are

normalized to cells transduced with NT guide RNAs. See also Figure S13.
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known to cooperate with CTCF for long-distance interactions

(Atchison, 2014) and has been implicated for the establishment

of TAD boundaries (Moore et al., 2015; Schwalie et al., 2013).

Many SNVs, including recurrent mutations (SNV8, 9, 11, 12,

14, and 18) are located at an YY1 ChIP-seq peak. We find that

the region spanned by SNV8 to SNV21 bound by many TFs

also shows the highest mutational density in other cancer types

aside from melanoma (Figure S12B). Thus, our results support

the previous observation that, in addition to CTCF, other TFs

may also play an important role in the maintenance of CTCF-

CTCF loops.

In order to experimentally test the potential role of this insu-

lator region in tumorigenesis, we designed CRISPR-Cas9 guide

RNAs to target SNV4 and SNV8 (Figure 3). We chose to edit the

nucleotides at SNV4 and SNV8 positions because they consti-

tute two of the most frequently mutated hotspots in this insu-
6 Cell Systems 8, 1–10, May 22, 2019
lator and may represent two different mechanisms for insulator

disruption by altering the binding of CTCF (SNV4) or ELK4

(SNV8). We lentivirally transduced A375 cells with 2 different

guide RNAs targeting each hotspot (SNV4 and SNV8) and 2

different non-targeting (control) guide RNAs. A high rate of edit-

ing was achieved for both SNV4 and SNV8 regions (Figure 3B)

and deep sequencing of the locus confirmed indels of varying

lengths with the expected bias toward deletions (Figures 3C

and S13). We compared proliferation over a 2-week period of

SNV4- and SNV8-edited cells to control cells transduced with

non-targeting guide RNAs. We found increased proliferation

in the SNV-edited melanoma cells—139.8% ± 7.3 for SNV4

and 149.8% ± 1.7 for SNV8— when compared to cells trans-

duced with non-targeting guides (Figure 3D), suggesting that

mutations in these regions confer a growth advantage in

melanoma.
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DISCUSSION

This study presents a comprehensive analysis of CTCF-cohesin

insulator mutations from WGS of 1,962 patients in 21 cancer

types. We find that background mutational processes in

different cancers lead to differential enrichment of mutations

predicted to disrupt CTCFmotifs; themajority of which are likely

to be passengers. Using the predicted functional impact of mu-

tations, their frequency and the patterns of CTCF-motif disrup-

tion, we developed a computational approach (CNCDriver) to

identify insulator regions under positive selection. Bench-

marking the statistical framework of CNCDriver on other types

of known cancer drivers (coding genes and promoters) demon-

strates its validity. We identify 21 candidate insulators showing

signals of positive selection. Mutations in one of these 21 can-

didates are associated with differential gene expression that

may play a role in tumorigenesis by interfering with the TGF-b

pathway in melanoma and other cancers, especially gastroin-

testinal. Our hypothesis is supported by functional validation

using CRISPR-Cas9 which shows that two of the most frequent

mutations increase cell growth by 1.4- and 1.5-fold in mela-

noma cells. While our study clearly shows the importance of

this region as cancer driver, high-throughput genome editing

approaches such as the one used recently to assay the SNVs

in 13 exons of BRCA1, can be used to elucidate the role of all

individual mutations in tumorigenesis (Findlay et al., 2018).

Thus, our study reveals several CTCF insulators as putative

drivers and opens the door to multiple experimental validation

and mechanistic studies of the tumorigenic impact of mutations

in these elements.

With increasing numbers of cancer whole genomes

sequenced and improvedmaps of cell-type-specific annotations

of insulator elements, we expect that additional insulator drivers

will be discovered in the future. The latest developments in

genomic technology, such as the Hi-C chromatin immunopre-

cipitation (HiChIP) assays, promise to reveal high-resolution

maps of insulator regions (Mumbach et al., 2016). We expect

that as the resolution of functional genomics assays improves,

the statistical power to identify signals of positive selection in

non-coding regions will also improve (Kumar and Gerstein,

2017). The framework developed in this study will guide the inte-

gration of genomic structure maps generated by the 4D Nucle-

ome project with large-scale cancer WGS (Dekker et al., 2017).

Our study also highlights the challenge of associating CTCF-

CTCF loop disruption to the affected genes in the absence of

large sample sizes with matched WGS and RNA-seq data. In or-

der to have sufficient statistical power to detect significant asso-

ciations between gene expression and mutations, we estimate

that we would need at least �300 samples with matched RNA-

seq data for the other cancer types in this study (STARMethods).

Finally, while we analyzed the impact of SNVs in insulators,

CTCF-CTCF loops may also be perturbed by DNA methylation,

small insertions or deletions, and structural variations at

insulators (Flavahan et al., 2016; Hnisz et al., 2016). Overall, iden-

tification of significantly disrupted CTCF-cohesin insulators

complements the identification of other types of non-coding

cancer drivers (promoters, enhancers, and ncRNAs) and enables

a fuller understanding of the role of non-coding alterations in

tumorigenesis.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-CTCF Cell Signaling Technology Cat#3418; RRID:AB_2086791

Critical Commercial Assays

KAPA HTP library prep kit Roche Cat#07961901001

NlaIII restriction enzyme NEB R0125

T4 DNA ligase NEB M0202

Sybr Green Supermix Bio-Rad 172-5270

QIAprep Spin Miniprep Kit Qiagen Cat#27106

CellTiter-Glo Luminescence Cell Viability Assay Promega Cat#G7571

QIAquick gel extraction Kit Qiagen Cat#28704

MiSeq Reagent Kits v2 Illumina Cat#MS-102-2001

Deposited Data

GENCODE v19 Harrow et al., 2012 https://www.gencodegenes.org/releases/

19.html

Whole genome sequencing SNV data for LUAD,

LUSC, BRCA, LGG, GBM, HNSC, THCA, UCEC,

and BLCA projects

Fredriksson et al., 2014 dbGaP: phs000178.v1.p1

Whole genome sequencing SNV data for Liver,

Medulloblastoma, PilocyticAstrocytoma, Renal,

Ovarian, Colon, SKCM, and MalignantLymphoma

projects

Perera et al., 2016 https://www.nature.com/articles/nature17437

Whole genome sequencing SNV data for MELA-AU,

CLLE-ES, ESAD-UK projects

ICGC Data Portal release v21 https://dcc.icgc.org

TCGA Level 3 gene expression profiles for LUAD,

LUSC, BRCA, LGG, GBM, HNSC, THCA, UCEC,

and BLCA projects

The Broad Institute,

Cambridge, MA

https://gdac.broadinstitute.org

RNA-seq profiles for ICGC LIRI-JP, PACA-AU,PACA-

CA, RECA-EU, OV-AU, CLLE-ES, MALY-DE

ICGC Data Portal release v21 https://dcc.icgc.org

RNA-seq profile for ICGC MELA-AU porject European Genome-phenome

Archive

https://www.ebi.ac.uk/ega/studies/

EGAS00001001552

Prostate adenocarcinoma whole genome

sequencing SNV data

Baca et al., 2013 dbGaP: phs000447.v1.p1

Primary prostate adenocarcinoma whole genome

sequencing SNV data

Berger et al., 2011 dbGaP: phs000330.v1.p1

Ultra-high signal artifact regions Dunham et al., 2012 https://sites.google.com/site/anshulkundaje/

projects/blacklists

Replication timing annotations Thurman et al., 2007 http://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeUwRepliSeq

CTCF/cohesin insulator annotations Hnisz et al., 2016 http://science.sciencemag.org/highwire/

filestream/675217/field_highwire_adjunct_files/

12/aad9024_TableS8_160122.xlsx

TAD annotations Dixon et al., 2012 https://www.encodeproject.org/comparative/

chromatin/

Tumor purity estimates for TCGA samples Aran et al., 2015 https://media.nature.com/original/nature-

assets/ncomms/2015/151204/ncomms9971/

extref/ncomms9971-s2.xlsx

ENCODE motif models Kheradpour and Kellis, 2014 http://compbio.mit.edu/encode-motifs/

motifs.txt

A375 CTCF ChIP-seq This paper GEO: GSE128346
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

A375, human malignant melanoma Laboratory of Joan Massagué

(Memorial Sloan Kettering

Cancer Center)

N/A

A375, human malignant melanoma ATCC CRL-1619

K562, human AML leukemia ATCC CCL-243

HEK293FT ATCC CRL-3216

Recombinant DNA

pMD2.G Addgene Cat#12259

psPAX2 Addgene Cat#12260

lentiCRISPRv2 plasmid Addgene Cat#52961

Software and Algorithms

FunSeq2 Fu et al., 2014 http://funseq2.gersteinlab.org/

featureCounts Liao et al., 2014 http://bioconductor.org/packages/release/

bioc/html/Rsubread.html

CNCDriver This paper https://github.com/khuranalab/CNCDriver

edgeR Robinson et al., 2010 http://bioconductor.org/packages/release/

bioc/html/edgeR.html

OncoDriveFML Mularoni et al., 2016 https://bitbucket.org/bbglab/oncodrivefml.git

SomaticSignatures Gehring et al., 2015 http://bioconductor.org/packages/release/

bioc/html/SomaticSignatures.html

Benchling [Biology Software] (2019) N/A https://benchling.com/

Other

Infinite F200 Pro plate reader Tecan Cat#INF-MPLEX
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ekta

Khurana (ekk2003@med.cornell.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Humanmelanoma cells (A375) were used for CTCF ChIP-seq, chromosome conformation capture (3C) and CRISPR-Cas9 functional

validation assays. Human leukemia cells (K562) were used as control in chromosome conformation capture (3C) assay. HEK293FT

cells were transfected for lentiviral vector production.

METHOD DETAILS

Data Used
Somatic Single Nucleotide Variants (SNVs) from WGS Data

We collected somatic SNVs from 1,962 whole-genome sequencing (WGS) samples across 21 cancer types (Table S1). 1,332 sam-

ples are from Alexandrov et al. (Alexandrov et al., 2013), Fredriksson et al. (Fredriksson et al., 2014), and Perera et al. (Perera et al.,

2016). These include hepatocellular carcinoma (liver), pancreatic adenocarcinoma (pancreatic), medulloblastoma, pilocytic astrocy-

toma, renal cell cancer (RECA-EU), ovarian serous cystadenocarcinoma (ovarian), colon adenocarcinoma (colon), skin cutaneous

melanoma (melanoma), malignant lymphoma (MALY-DE), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),

breast invasive carcinoma (BRCA), brain low grade giloma (LGG), glioblastoma multiform (GBM), head and neck squamous cell car-

cinoma (HNSC), thyroid carcinoma (THCA), uterine corpus endometrial carcinoma (UCEC), and bladder urothelial carcinoma (BLCA).

119 esophageal adenocarcinoma samples (ESAD-UK), 150 chronic lymphocytic leukemia samples (CLLE-ES) and 124 prostate

adenocarcinoma samples (PRAD-CA) were obtained from ICGC (International Cancer Genome Consortium) data portal (release 21).

183 melanoma samples (MELA-AU) were obtained from ICGC data portal (release 25). 16 of 183 melanoma patients have both pri-

mary and non-primary (9 metastasis and 7 relapse) WGS specimens. We used metastasis and relapse specimens for these 16 pa-

tients in melanoma. 57 prostate adenocarcinoma samples are from Baca et al. (Baca et al., 2013) and seven are from Berger et al

(Berger et al., 2011).
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A set of 226 ultra-high signal artifact regions (https://sites.google.com/site/anshulkundaje/projects/blacklists) was obtained from

the ENCODE project (Dunham et al., 2012). The annotated regions are based on known sequence repeats and are characteristic of

high variance in read mappability. We removed somatic mutations that overlapped with ultra-high signal artifact regions to avoid

possible false mutation calls in the dataset.

Constitutive CTCF/Cohesin Insulator Annotations

We obtained all publicly available sources of cohesin ChIA-PET data (SMC1 ChIA-PET and RAD21 ChIA-PET) and CTCF ChIA-PET

data to build the constitutive CTCF/cohesin insulator annotations across five cell lines (Jurkat, K562, GM12878, MCF-7 and HeLa)

(Figure S1B). The SMC1 ChIA-PET data is available in Jurkat cell line from Hnisz et al. (Hnisz et al., 2016) and the RAD21 ChIA-PET

data are available in K562 and GM12878 cell lines from Heidari et al. (Heidari et al., 2014). The data in SMC1 ChIA-PET of Jurkat and

RAD21ChIA-PET data of K562 andGM12878were processed byMango pipeline (Phanstiel et al., 2015) at FDR threshold of 0.2. Only

those anchors in the ChIA-PET loop that overlappedwith corresponding cell type specific CTCFChIP-seq peaks from ENCODEwere

kept as CTCF/cohesin insulators. The CTCF ChIA-PET data in K562 and MCF-7 cell line are obtained from ENCODE website and

were processed by ChIA-PET v1 as described in Li et al. (Li et al., 2012a). The CTCF ChIA-PET data in GM12878 and HeLa cell

line are obtained from Tang et al. (Tang et al., 2015) and were processed by ChIA-PET v2 as described in Tang et al. (Tang et al.,

2015). Only those anchors of the ChIA-PET loops that co-occupied corresponding cell-type specific RAD21 and SMC3 ChIP-seq

peaks from ENCODE were kept as CTCF/cohesin insulators. These CTCF/cohesin sites (loop anchors) have distinct functional

role from the peaks identified byCTCFChIP-seq or RAD21 and SMC3ChIP-seq alone (non-loopCTCF or cohesin sites) and are high-

ly likely to function as insulators.We intersectedCTCF/cohesin insulators that are either from cohesin ChIA-PET or CTCFChIA-PET in

at least 5 out of 7 ChIA-PET data as constitutive CTCF/cohesin insulator annotations for the analysis in this study. There are 10,654

constitutive CTCF/cohesin insulators and their median length is around 2kb (Figure S1A). This length is comparable to the length of

promoters (2.5kb) used by us and others for the studies of cancer drivers (Hornshøj et al., 2018; Mularoni et al., 2016; Weinhold

et al., 2014).

Motifs of CTCF and Other TFs and CTCF Motif Orientations

We used motifs for 549 TFs from the ENCODE project (http://compbio.mit.edu/encode-motifs/motifs.txt, Table S14) (Dunham et al.,

2012), including TRANSFAC and JASPARmotifs, located within potentially functional regions such as DHSs or ChIP-Seq peaks. The

motif models for CTCF are derived from human ChIP-seq data using curated motif models from literature and de novomotif models

discovered from fivemotif discovery tools (AlignACE,MDscan,MEME, Trawler andWeeder) in the ENCODE project (Kheradpour and

Kellis, 2014). In particular, for CTCF, we analyzed 12 CTCF motif models. We do not use RAD21 and SMC3 motif models from the

ENCODE project since RAD21 and SMC3 are architectural proteins and they do not bind DNA directly.

CTCF binds DNA asymmetrically as revealed by previous study (Phillips and Corces, 2009; Rhee and Pugh, 2011). We first define

the orientation of CTCF motif (MA0139.1) from the JASPAR 2018 CORE vertebrate (MA0139.1) as CTCF forward direction and the

reverse-complement model as CTCF reverse direction (Figure S2A). We used FIMO to identify the location and orientation of

CTCFmotif at P-value threshold of 10-6. The identified locations of CTCFmotif are further overlappedwith locations of CTCF/cohesin

insulators in 7 ChIA-PET datasets.

Annotations of Coding Sequence (CDS), ncRNAs, Promoters and Enhancers

The GENCODE v19 annotations were used to define the locations of protein-coding sequence (CDS) and lincRNAs (long intergenic

non-coding RNAs). Promoters were defined as 2.5 kb upstream from the transcription starting site (TSS). Our enhancer set is ob-

tained by the union of TF binding peaks and DHSs from ENCODE, and Segway/ChromHMM-predicted enhancers, which were

defined from histone marks (H3K4me1, H3K4me2 and H3K27ac) (Fu et al., 2014). All enhancers are at least 1kb away from the

TSS of the nearest gene. To associate potential regulatory targets of each enhancer, we consider all candidates genes within 1

Mb of an enhancer (Fullwood et al., 2009; Yip et al., 2012). Then, correlations between enhancer activity/inactivity signals and

gene expression across multiple tissue types are computed using DNA methylation, H3K4me1, H3K27ac and RNA-seq data from

the Roadmap Epigenomics project (Fu et al., 2014; Kundaje et al., 2015). H3K4me1 and H3K27ac data were considered as activity

signals, and DNAmethylation as inactivity signal. Significant correlation between the enhancer signal and the target gene expression

was used to call enhancer-target gene pairs (see Fu et al., 2014 for more details).

Replication Timing Data

We obtained wavelet-smoothed Repli-seq track data for 7 cell lines (HepG2, MCF-7, SK-N-SH, GM12878, BJ, K562 and

IMR-90) from the University of Washington ENCODE group (http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncode

UwRepliSeq). We used HepG2 to represent replication timing in liver, MCF-7 for breast, GM12878 for malignant lymphoma, K562

for CLL, BJ for melanoma, IMR-90 for lung, SK-N-SH for glioblastoma, medulloblastoma and pilocytic astrocytoma. For pancreatic,

kidney, ovarian, colon, esophageal, and prostate, we used the average replication timing signal from HepG2, MCF-7, GM12878,

K562, BJ, IMR-90 and SK-N-SH. The replication timing tracks were further divided into 1Mb bins for each cell line. For a given func-

tional element, we assigned a replication timing value corresponding to its overlapping 1Mb bin. If it overlapped with two bins, we

took the average.

Copy Number Alteration Data

For TCGA data, the copy number was obtained using TCGA SNP array data from Broad GDAC Firehose website (https://gdac.

broadinstitute.org/). CNVKit (CNVKit version 0.9.5) was used with default parameters to get integer copy number segmentations.

We used ASCAT (ASCAT version 2.4.2 ) with default parameters to identify copy number alterations, ploidy, and purity for the

WGS samples in the ICGC MELA-AU project.
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YY1 and ELK4 ChIP-seq Data

The YY1 ChIP-seq track shown in the figure (Figure S12D) is frommelanomaMELAME-3M cells (Li et al., 2012b). YY1 binds the same

region in MELAME-3M, K562, SKNSH and GM12878 cells (chr19:41,769,535-41,770,722). ELK4 ChIP-seq data shown in the figure

(Figure S12D) is from HeLa-S3 cells from ENCODE, the same binding region is found in HEK293 cells.

Functional Validation Assays
CTCF ChIP-seq on A375 Cells

A375 cell line was obtained fromDr. JoanMassagué (Memorial Sloan Kettering Cancer Center) and cultured in DMEM supplemented

with L-glutamine (2mmol/L), penicillin (100U/ml), streptomycin (100ug/ml) and 10% heat-inactivated FBS. Cell line was cultured at

37�C with 5% CO2 and has been tested negative for mycoplasma (MycoAlert PLUS Mycoplasma Detection kit; Lonza). ChIP-Seq

was performed as previously described (Chi et al., 2010). In brief, 15million A375 cells were harvested and cross-linkedwith 1%para-

formaldehyde for 10min at room temperature. Cross-linking was quenched with a final concentration of 0.2M glycine for 5min. Cells

were washedwith PBS and lysedwith 0.1%SDS, 1%Triton X-100, 2mMEDTA, 150mMNaCl and 20mMTris-HCl, pH 8.1. Chromatin

was sheared to around 150bp to 600bp using Covaris E220 machine and incubated with 6ul CTCF antibody (Cell Signaling Technol-

ogy; #3418) overnight at 4�C with rotation. 20ul Pierce ChIP-grade protein A/G magnetic beads was used for immunoprecipitation.

The immunoprecipitated complex was washed with lithium wash buffer (0.7% sodium deoxycholate, 1% NP-40, 1mM EDTA,

500mM LiCl, 50mM HEPES-KOH, pH 7.6), reverse cross-linked and purified with Qiagen mini-elute column. ChIP library was con-

structed using KAPA HTP library prep kit and sequenced on Illumina 2500 platform for single read 50bp.

Chromosome Conformation Capture (3C) Assays

Chromosome conformation capture (3C) was performed as described previously with some modifications (Dekker, 2006). Briefly,

A375 cells and K562 cells were crosslinked in 1% formaldehyde for 10 min at room temperature. Cells were lysed for 20 min in lysis

buffer (10mM Tris-HCl, 10mM NaCl, 0.2% Igepal CA630) on ice, resuspended in 0.5% SDS, quenched with Triton X-100 and the re-

maining nuclei were resuspended in the appropriate restriction enzyme buffer. Cells were incubated overnight at 37C and 700rpm

rotation with NlaIII restriction enzyme (NEB R0125) and subsequently ligated for 4 h at room temperature with T4 DNA ligase

(NEB M0202). Crosslinks were reversed and DNA was purified using Phenol:Chloroform:Isoamylalcohol (25:24:1) purification. Hu-

man genomic DNA was digested, ligated, and purified and used as a negative control. Quantification of the data was performed

by qPCR using SybrGreen Supermix (Biorad 172-5270).

The primer sequences for PCR are:
3C region A CTGCTTCTCTGTATGTTACCTCATTCGATTGTCC

3C region B CCTTTGTCTGAGTAGAGATAGTGTGTGGCTTTTG

3C region C CTCCTTTATTCTGAAGGGAGTGGGCATCAAG

3C region A0 CAAGTTAGTTCCTGGTCACCTTAGATTGATGGG

To further confirm that the 3C product indeed consisted of the assessed regions, the PCR products were

run on an agarose gel to assess the predicted amplicon size, then gel-extracted and Sanger sequenced.
CRISPR Guide RNA Design, Cloning and Lentivirus Production

To design the guides targeting the 3kb insulator region on chr19 (41,767,305-41,771,623) we selected regions that were most

frequently mutated in human melanoma samples. We focused on two regions (termed SNV4 and SNV8). We first performed Sanger

sequencing in the A375 humanmelanoma cell line (ATCCCRL-1619) to ensure that nomutation exists in the 3kb insulator region. We

identified all possible Cas9-targetable sites on both strands in SNV4 and SNV8 and eliminated single-guide RNAs (sgRNAs) with pre-

dicted off-target binding (Benchling) which yielded 4 sgRNAs total (2 for SNV4 and 2 for SNV8). The sgRNA sequences were synthe-

sized as single-stranded oligonucleotides (Integrated DNA Technologies).
SNV4-1 GCCGCCACTGGAGGGCGTCC

SNV4-2 AGCCGCCACTGGAGGGCGTC

SNV8-1 CTGGTGAATTCATCTCTTTC

SNV8-2 ATCTCTTTCCGGTTTCTTAA

NT1 CCAATACGGACCGGATTGCT

NT2 GTAGCGCACGATATTAGTTC
To clone the sgRNA guide sequences, the lentiCRISPRv2 plasmid (Addgene #52961) was digested and dephosphorylated with

FastDigest BsmBI (Thermo) and FastAP (Thermo) at 37�C for 45min (Sanjana et al., 2014). The sgRNA guide sequence oligonucletodies

werephosphorylatedusingpolynucelotidekinase (NewEnglandBiolabs) at37�Cfor30minand thenannealedbyheating to95�Cfor5min

and cooling to 25�Cat a rate of 1�C/5 seconds.We used T7 ligase (Enzymatics) to ligate annealed oligos into purified digested vectors at

22�C for 10 min. Cloned plasmids were transformed into Stbl3 (Thermo) and purified using a QIA-prep spin mini-prep kit (Qiagen).
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To make lentivirus, plasmids were co-transfected with packaging plasmids pMD2.G and psPAX2 (Addgene #12259 and #12260).

For each construct, a T-75 flask of 95% confluent HEK293FT cells (Thermo) in 5 mL of D10 media and transfected in OptiMEM

(Thermo) using 8.3 ug of Cas9 construct, 4.6 ug of pMD2.G, and 6.6 ug of psPAX2, and 45.6 uL of PEI. D10 media consists of

DMEM (Caisson Labs) supplemented with 10%FBS (Atlas Biologicals). After 4-6 h 5mL of D10media with 1%bovine serum albumin

(Sigma) was added to the flask to improve virus stability. After 48 h, viral supernatant was harvested and centrifuged at 3000 rpm at

4�C for 10 min to get rid of cell debris.

Cell Culture, Viral Transduction and Proliferation Assay

For each viral construct, 1x104 A375 cells (ATCC CRL-1619) were transduced during plating with 200 uL of viral supernatant in each

well of a 24 well plate in 1mL of D10media. Each construct was transduced in duplicate. Cells without virus were also plated in dupli-

cate in a 24 well plate with 1 mL of D10 media as controls for puromycin selection.

At 24 h post-transduction media was changed to D10 with 1 ug/ml puromycin (Sigma) for all wells. At 48 h cells were fully

selected, as determined by a non-transduced control well. At 2 weeks post-transduction, cells were plated in 96 well clear bot-

tom plates (Corning) at 2,000 cells/well to measure cell viability using CellTiter Glo (Promega). Briefly, cells were equilibrated to

room temperature for 30 min. Then, culture media was aspirated and 100 uL of CellTiter Glo reagent diluted 1:4 in PBS phos-

phate-buffered saline (Caisson Labs) was added to each well. Plates were then placed on orbital shaker for 2 min and then

incubated for 10 min at room temperature. Luminescence was measured on an Infinite F200 Pro plate reader (Tecan) using

a 1s integration time.

Deep Sequencing to Determine Indel Spectrum

To extract genomic DNA, we used QuickExtract DNA Extraction Solution (Lucigen), following the manufacturer’s protocol. To pre-

pare samples for Illumina sequencing, a two-step PCR was performed to amplify the region of interest. For each sample, we per-

formed 2 seperate 100 uL reactions (25 cycles each) with 250 ng of input gDNA using PfuX7 polymerase (Nørholm, 2010) and the

resulting products were pooled.

The primers for the first PCR are:

F1_SNV4 TCTTGTGGAAAGGACGAAACACCGAAGACCAGCCCACCGTGTC

R1_SNV4 CCGACTCGGTGCCACTTTTTCAATGCTTTGGGTAAGGCACCCC

F1_SNV8 TCTTGTGGAAAGGACGAAACACCGATGAGCCATCGCTACCAGCTT

R1_SNV8 CCGACTCGGTGCCACTTTTTCAACTAGCCAATCAGAGCGCCGT

The second PCR was performed to attach Illumina adaptors and to barcode individual samples. The PCR was done in a 50 uL

reaction with 5 uL of PCR1 product using Q5 polymerase (New England Biolabs). Amplification was carried out with 10 cycles.

The primers for the second PCR are:

F2 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT (1-9bp stagger sequence)(8bp bar-

code)TCTTGTGGAAAGGACGAAACACCG

R2 CAAGCAGAAGACGGCATACGAGAT (8bp barcode) GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT(1-9bp stagger)

CCGACTCGGTGCCACTTTTTCAA

PCR2 products were pooled in an equimolar ratio, purified, gel extracted, and sequenced using aMiSeq 300 cycle v2 kit (Illumina).

Before determining the length of indel mutations, we first filtered out primer-dimers or unrelated amplicons by removing any reads

that did not contain the designed PCR1 primers and at least 5 bases beyond the 3’ end of each primer matching the intended am-

plicon. Reads that met this criteria were then used tomeasure the distance between primer pairs. This distance between primer pairs

in cells transduced with sgRNAs targeting SNV4 or SNV8 regions was compared to the same distance in cells transducedwith a non-

targeting control sgRNA.

QUANTIFICATION AND STATISTICAL ANALYSIS

To Assess the Landscape of Mutations at CTCF/Cohesin Insulators
Motif-Disrupting vs. Preserving Mutations

To definewhether a SNV disrupts a TFmotif, we compute the statistical significance of the position weight matrix (PWM) score for the

sequence change (alternative relative to reference). When the alternative sequence decreases the PWM score in the TF motif, we

define it as a motif-disruption using a P-value threshold of 4310-8. This approach is the same as is used in FunSeq2 (Fu et al., 2014).

Enrichment/Depletion of TF Motif-Disruption

To assess the enrichment of CTCF and other TFmotif-disruption events within a specific cancer type, we performed a binomial test to

compare the fraction of disrupted TF motifs to the corresponding proportion of the TF motifs abundance.

Deciphering the Signatures of Mutational Processes Operative in TF Motif Disruption

To decipher the signatures of mutational processes operative in the TF binding site regions, we used the FunSeq2 annotation of the

SNVs that disrupt TFmotifs and computed their normalized tri-nucleotide distributions, which determined themotif-disruption signa-

ture for each TF for each cancer type (frequency of 96 mutation types equivalent to the six substitution changes and their immediate

5’ and 3’ sequence context). To assess the similarity between motif-disruption signatures and the COSMIC signatures of mutational

processes, we used a threshold of 70% cosine similarity, which is the same metric used for defining the mutational signatures by

Alexandrov et al. (2013) (Alexandrov et al., 2013). We note that any previously described signature in liver cancer does not reach

the 70% similarity to the CTCF motif-disrupting tri-nucleotide distribution. likely because liver cancer does not show prevalence
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of a single unique signature. In fact, liver cancers harbor five ubiquitous signatures (S1, S4, S5, S12, S16) with high mutation burden

as has also been reported in Letouze et al. (Letouzé et al., 2017).

Estimation of Observed and Expected Aggregated Mutational Rate for CTCF Motif-Disruption within Insulators
In order to compute the rate of mutations predicted to cause CTCFmotif-disruption within insulator regions, we considered the CTCF

motif annotations from FunSeq2 within the flanking stretches of 2,500 nucleotides on both sides of the insulator mid-point. To

exclude regions that could bias the mutation rate analyses, we filtered out any mutations annotated in coding sequences. The mu-

tations that fall into CTCF binding sites were split into motif-disrupting or non-disrupting groups and overlapped with the insulator

regions (5 kb windows). Then the 5kb windows across the genome were aligned to each other using their mid-points as reference.

The aggregate mutation rate of every position within the insulator window was calculated as the total number of mutations at this

position divided by the total number of nucleotides considered. In order to compute the expected CTCF motif-disruption mutation

rate within insulators, we randomly introduced the same number of mutations as observed in CTCF motifs at each insulator window.

The CTCF motif-disruption mutation rate of each randomly generated set of changes was computed as explained above and this

procedure was repeated 100 times. Finally, the estimate of the expected rate of mutations predicted to cause CTCFmotif-disruption

was computed as the mean random mutation rate of every position within the windows of insulator regions. This was done for 12

cancer types that have more than 500 SNVs predicted to cause CTCF motif-disruption. The same steps were used for mutations

that are not predicted to disrupt CTCF motifs.

Details of CNCDriver
Identification of Mutation Clusters

The clustering of mutations has been suggested to indicate signal of positive selection in cancer (Rheinbay et al., 2017; Wagner,

2007). We perform ‘‘density-based spatial clustering of applications with noise (DBSCAN)’’ algorithm to exclude mutations that

are not located within mutation clusters. We use DBSCAN since the mutation clusters identified are not restricted by fixed window

size or fixed number of clusters. The DBSCAN algorithm needs two values of parameters ‘‘minPts’’ and ‘‘ 3’’ to detect clusters. The

minPts was chosen as 2 samples or 2% of sample size, depending on which number is larger in the cohort of each cancer type. We

use 3value as 50 bases by considering the length of the longest TF motif (20 bases) with 15 flanking bases in two directions.

Method Framework for Driver Identification

To identify significantly mutated elements (CDS, promoters, enhancers, lincRNAs and CTCF insulators), we developed CNCDriver

(Cornell Non-Coding Driver), which combines mutational recurrence and functional impact of variants to discern signals of positive

selection.

First, CNCDriver defines a positional CNCDriverpos score for eachmutated position (i) bymultiplication of positional recurrence (Wi)

and functional impact score (FSi).

CNCDriverpos =Wi 3FSi

The positional recurrence of a variant is defined as the number ofmutated samples at the same position divided by the total number

of samples in the cohort. For each variant, CNCDriver uses FunSeq2 to integrate functional annotations and assign a functional

impact score (Fu et al., 2014; Khurana et al., 2013). The weighted functional impact-scoring scheme from FunSeq2 incorporates fea-

tures such as the presence of variants in annotated regions (e.g. DHSs, histone modification marks, sensitive, ultra-sensitive,

conserved, and highly occupied by transcription factor (HOT) regions) and the predicted impact of variants on TF binding. While

for promoters and enhancers, a variant’s impact on TF binding is assessed for all TF motifs (549 TFs from ENCODE), only motifs

for CTCFwere used for variants in CTCF insulators. For all variants within an element, a CNCDriver score (Sj) is defined by summation

of all positional CNCDriverpos scores within the element:

Sj =
Xn

i = 1

Wi 3FSi

where n is the number of mutated positions within an element.

The method compares the observed CNCDriver score of an element to the null model and a p value is computed to evaluate the

significance of the observed CNCDriver score. To build the null backgroundmodel, a simulated CNCDriver score (Sjk) is computed by

sampling nmutations from othermutations in the same element type andwith similar properties, such as replication timing. The prob-

ability of drawing a mutation is determined by its tri-nucleotide sequence probability across all samples in a given cancer type. The

sampling process is repeated N times (N = 105).

For CDS, promoters, enhancers and lincRNAs, replication timing threshold is chosen as the nearest 20% range between back-

ground scores and CNCDriverpos scores in the test element, so that mutations in a test element are compared with other mutations

in a similar stage of the cell cycle in the Repli-seq profile (Hansen et al., 2010). For CTCF/cohesin insulators, we found the correlation

(R-squared value of Pearson correlation) between CNCDriverpos score per Mb and replication timing varies substantially across can-

cer types. Therefore, in order to choose the best replication timing threshold for the backgroundmodel of CTCF/cohesin insulators in

each individual cancer type, we used the relationship between optimal threshold and R-squared value in CDS driver prediction as

reference. First, whenCOSMICcancer gene listwas usedas thegold standard for benchmarking, there is an optimal replication timing
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threshold in each cancer type that maximized the AUROC (area under the receiver operator characteristic curve) in the CDS driver

prediction. Thus, we can learn the relationship between R-squared value and optimal replication timing threshold from CDS driver

benchmarking. This relationship is then used to decide the replication timing threshold for significantly mutated insulator prediction.

For CTCF insulators, we also keep the same ratio ofmutations predicted to disrupt CTCFmotif or not during null backgroundmodel

generation.

For all elements, a pseudo-count is added to the numerator and the denominator. The p value of the tested element is deter-

mined by

P=
1+ countðSjkRSjÞ

N+ 1

where N is the number of sampling iterations, Sjk is a simulated CNCDriver score in each sampling iteration and Sj is the

observed CNCDriver score of an element. We use the Benjamini and Hochberg method to correct for multiple hypothesis testing

(Q value % 0.1).

Filter for AID Somatic Hyper-Mutation in CNCDriver

APOBEC and AID are cytidine deaminases, which convert cytosine to uracil, resulting in C -> T/Gmutations. The APOBECmotif con-

sists of three nucleotides and has been associated with characterized mutational signatures (Alexandrov et al., 2013). AID is ex-

pressed in several types of B cell lymphomas (Kotani et al., 2007), but in contrast to APOBEC, the AIDmotif consists of 4 nucleotides,

[(AjT)(AjG)C(TjC)] (Rogozin and Diaz, 2004) and has not been associated with a characterized signature in Alexandrov et al. (2013).

Alexandrov et al. noted that signature 9, which is observed in lymphoma, does not exhibit themutational pattern of AID likely because

the AID signal is obscured by mutations caused by the error-prone polymerase h. In order to identify elements whose mutations are

primarily caused by AID somatic hypermutation, we use the following formula from Roberts et al. (Roberts et al., 2013) to calculate

enrichment of AID signature mutations in candidate elements,

AID Enrichment =
mutationsmotif 3 contextc
mutationsC 3 contextmotif

wheremutationsmotif is the number ofmutations in the AIDmotif, mutationsC is the number ofmutated cytosines, contextC is the total

number of cytosines, and contextmotif is the total number of occurrences of the AIDmotif. We use the Fisher’s exact test to determine

significance. In CNCDriver, this filter allows the user to identify whether the signals in lymphoma are predominantly due to AID so-

matic hypermutations.

Estimation of Intra-tumor Heterogeneity
We collected tumor purity estimates (p) and absolute somatic copy numbers (cn) for TCGA samples which are derived from the

consensus of four methods (ABSOLUTE, ESTIMATE, LUMP and IHC) from Aran et al. (Aran et al., 2015). Following the method pre-

viously described (Landau et al., 2013; McGranahan et al., 2015), we computed the expected VAFexp given a CCFi over the entire

range of CCF (cancer cell fraction) assuming a uniform prior, with CCFi˛[0.01, 1].

VAFexpðCCFiÞ= p3CCFi

2ð1� pÞ+p3 cn

For a given mutation with alternative read counts (a), reference read counts (r) and total read depth (r + a), the probability of a given

CCFi can be estimated from binomial distribution,

VAFobs =
a

r + a
PðCCFiÞ= 1

C
3binomialðVAFobs;VAFexpðCCFiÞÞ

Then, for a given mutation with VAFobs, we computed the distribution of posterior probability P(CCFi) over 100 grid points of CCFi
uniformly spanned between 0.01 to 1. The distribution over CCF was normalized by dividing them by their sum, which is the

constant (C). Mutations were classified as clonal if the maximum probability of CCFi is in the top quartile of cancer cell fraction

(max(P(CCFi))R0.75); otherwise mutations were classified as subclonal.

Analysis of Interactions between Insulator Mutations and CTCF Zn Finger Binding Domains
Hashimoto et al. indicated CTCF Zn finger domains 3-7 (ZF3-ZF7) are critical for its binding to 15 bp core DNAmotif in the CTCF-DNA

binding co-crystal structure (Hashimoto et al., 2017). In addition to the core sequence, Yin et al. showed �15% sequence in CTCF

binding sites is recognized by Zn finger domains 8-11 (ZF8-ZF11) from the crystal structure, although they have 5 fold weaker binding

affinity than ZF3-ZF7 (Yin et al., 2017). CTCF ZF8 servers as a spacer element with a variable length between ZF3-ZF7 and ZF9-ZF11.

Schmidt et al. propose a 9 bp CTCF M2 motif to represent the consensus sequence that binds ZF9-ZF11 upstream of core motif

(Schmidt et al., 2012). In this study, 293 out of 462 mutations (63%) in the 21 insulators identified to be significantly mutated locate
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within CTCFChIP-seq peaks. 23 out of these 293mutations (8%) occur in the coremotif that binds ZF3-ZF7. Althoughwe did not find

CTCFM2motif matched by FIMO (p value: 10-4) upstream of the coremotif, 12mutations are within the window that would bind other

domains (ZF9-ZF11) (Table S15).

Additionally, our major insulator candidate in melanoma has three mutated positions within the CTCF motif (SNV4,

chr19:41,768,332 mutated in two patients; SNV10, chr19:41,768,799 in one patient and SNV11, chr19:41,769,800 in two patients,

Figure S12E). SNV4 occurs at position 6 in the 19 bp CTCF motif (reverse orientation), overlaps with CTCF ChIP-seq peak in human

melanoma A375 cells (Figure 2A), is predicted to interact with ZF4 in the CTCF protein structure and increases cell growth by 1.4 fold

in melanoma cells by CRISPR experiment (Figure 3D).

Assignment of Possible New CTCF-CTCF Chromatin Loops
Prior studies have shown that the majority (�80%) of the CTCF motifs within the two anchors of CTCF-CTCF chromatin loops are in

the convergent orientation (forward-reverse) (Hnisz et al., 2016; Ji et al., 2016; Tang et al., 2015). Additionally, in the set of constitutive

CTCF-CTCF chromatin loops we built from publicly available ChIA-PET datasets (Heidari et al., 2014; Hnisz et al., 2016; Li et al.,

2012a; Tang et al., 2015), 75% are within the range of 360KB. We determined the number of potential rewiring events by requiring

that new loops: 1) contain convergent CTCF motifs at anchors within 360 kb of each other, and (2) if the predicted insulator driver is

located within a TAD, the predicted new loops will also be within the same TAD.When the predicted driver is located at a TAD bound-

ary, we do not predict loop-rewiring events due to the possibility of formation of new TADs. Most TADs are conserved across cell-

types, and we used the hESC TADs from Dixon et al (Dixon et al., 2012).

Gene Expression Analysis for Significantly Mutated Insulators
We evaluated the association between the presence of somatic mutations at CTCF insulators and mRNA expression of genes within

the potential new CTCF-CTCF loops. There are 76 genes that may be impacted by the change of loops associated with 21 insulator

candidates predicted by CNCDriver. We used matched RNA sequencing raw counts and copy number data in ICGC data release 24

(https://dcc.icgc.org/releases/release_24) for liver, pancreatic, renal, CLL and malignant lymphoma. We used matched RNA

sequencing raw counts and copy number data from TCGA (Weinstein et al., 2013) for LUAD, LUSC, BRCA, LGG, GBM, HNSC,

THCA and UCEC. Because matched RNA-seq data were not available for medulloblastoma, pilocytic astrocytoma and ESAD, these

three cancer types were not included in the mRNA expression analysis. For each cancer type, mRNA raw counts were normalized by

trimmed mean of M-values (TMM) using the edgeR package (Robinson et al., 2010). In pan-cancer analysis, the mRNA expression

level of a given gene and cancer type was first transformed into Z score if at least 25% tumor samples contained non-zero expression

value. Then, the mRNA expression (Z score scale) from each cancer was summed up as the gene expression in pan-cancer. The

Wilcoxon rank-sum test was used to test the significance of the differential gene expression between tumor samples with insulator

mutations vs. those without. For gene expression analysis in pan-cancer, the Z score of a given gene in each group was summed

across available cancer types followed by the Wilcoxon rank-sum test. Multiple hypothesis correction was done using the Benja-

mini-Hochberg method.

We have also compared the expression of genes in tumor samples with insulator mutations versus normal samples, though we

note that in melanoma, there is only one normal sample with RNA-seq data available. There are only 12 cancer types in our study

with RNA-seq data from normal samples. Furthermore, only 5 out of 12 cancer types with RNA-seq data from normal samples

have at least one insulator candidate. Nevertheless, we find that the genes (FOXN4 andMYO1H) within the loops of insulator candi-

date in breast cancer (Figure S11G) are enriched in the set of differentially expressed genes between tumor and normal samples

(p value: 0.04, Fisher’s exact test).

Gene Expression Sample Size Estimation
Wewere able to detect significant difference in gene expression when there were 12 samples with mutations vs. 68 samples without

mutations for�2-fold change (CYP2S1) and�3-fold change (TGFB1) in melanoma. While melanoma hasmutation frequency of 16%

or more in the candidate insulator drivers, the mutation frequency (2% to 4%) of candidate insulator drivers in other cancer types is

lower. Thus, given amutation frequency is 3%and assuming aminimumnumber ofmutated samples neededwithmatchedWGSand

RNA-seq data is 10, we will likely need �300 samples with matched RNA-seq and WGS data to detect meaningful gene expression

association in other cancer types with similar fold differences as observed for CYP2S1 and TGFB1.

DATA AND SOFTWARE AVAILABILITY

Software
The code of CNCDriver is freely available online at https://github.com/khuranalab/CNCDriver.

Data Resources
The accession number for the A375 CTCF ChIP-seq data described in this study is GEO: GSE128346.
e8 Cell Systems 8, 1–10.e1–e8, May 22, 2019

https://dcc.icgc.org/releases/release_24
https://github.com/khuranalab/CNCDriver

	CELS565_proof.pdf
	Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes
	Introduction
	Results
	Determining Mutational Rate Co-variates at Insulators
	Computational Method to Identify Cancer Drivers
	Putative Insulator Drivers Identified by CNCDriver
	Predicted Rewiring of Chromatin Loops around Insulator Drivers and Associated Genes
	Functional Validation of Predicted Driver Insulator Associated with Differential Expression of TGFB1

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Data Used
	Somatic Single Nucleotide Variants (SNVs) from WGS Data
	Constitutive CTCF/Cohesin Insulator Annotations
	Motifs of CTCF and Other TFs and CTCF Motif Orientations
	Annotations of Coding Sequence (CDS), ncRNAs, Promoters and Enhancers
	Replication Timing Data
	Copy Number Alteration Data
	YY1 and ELK4 ChIP-seq Data

	Functional Validation Assays
	CTCF ChIP-seq on A375 Cells
	Chromosome Conformation Capture (3C) Assays
	CRISPR Guide RNA Design, Cloning and Lentivirus Production
	Cell Culture, Viral Transduction and Proliferation Assay
	Deep Sequencing to Determine Indel Spectrum


	Quantification and Statistical Analysis
	To Assess the Landscape of Mutations at CTCF/Cohesin Insulators
	Motif-Disrupting vs. Preserving Mutations
	Enrichment/Depletion of TF Motif-Disruption
	Deciphering the Signatures of Mutational Processes Operative in TF Motif Disruption

	Estimation of Observed and Expected Aggregated Mutational Rate for CTCF Motif-Disruption within Insulators
	Details of CNCDriver
	Identification of Mutation Clusters
	Method Framework for Driver Identification
	Filter for AID Somatic Hyper-Mutation in CNCDriver

	Estimation of Intra-tumor Heterogeneity
	Analysis of Interactions between Insulator Mutations and CTCF Zn Finger Binding Domains
	Assignment of Possible New CTCF-CTCF Chromatin Loops
	Gene Expression Analysis for Significantly Mutated Insulators
	Gene Expression Sample Size Estimation

	Data and Software Availability
	Software
	Data Resources





