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Human tumors express antigens, and T cells 
specific for these antigens have been detected in 
patients with cancer. However, we know that 
tumor-reactive T cells found in tumors are gen-
erally nonfunctional or ineffective because, de-
spite their presence, tumors often progress and 
eventually cause death. One therapy being pur-
sued to establish effective antitumor immunity 
is adoptive T-cell transfer: the administration of 
millions of in vitro–generated, highly function-
al, tumor-reactive T cells to patients with cancer. 
Tumor-reactive T cells can be isolated from pa-
tients’ own tumors, stimulated and expanded in 
vitro, and infused back into the patient. Alterna-
tively, autologous T cells can be engineered in 
vitro to become tumor-reactive by the introduc-
tion of genes that encode receptors specific for 
tumor antigens (either T-cell receptors [TCRs] or 
chimeric antigen receptors [CARs]).

Although impressive successes with adoptive 
T-cell transfer have been observed in subgroups 
of patients with cancer and in various cancer 
types, most patients, especially those with solid 
tumors, still do not have long-term responses. 
Why? When T cells enter tumors, they become 
exposed to the immune-suppressive tumor micro-
environment and to persistent tumor antigen. 
Microenvironmental signals, persistent antigen 
encounter, and chronic TCR stimulation drive 
T cells into a hyporesponsive state, also referred 
to as T-cell exhaustion or dysfunction.1 T cells 
then stop proliferating and lose their ability to 
produce the effector cytokines (tumor necrosis fac-
tor α [TNF-α], interferon-γ, and interleukin-2) 
and cytotoxic molecules (granzymes and perforin) 
that are necessary for effective attack and elimi-
nation of tumor cells (Fig. 1).

Can T cells be engineered to resist dysfunc-
tion? A recent study by Legut and colleagues2 

suggests that they can. Technological advances, 
including genomewide perturbation screens, are 
enabling precise dissection of the molecular 
mechanisms that regulate tumor-induced T-cell 
dysfunction. However, such screens have largely 
been limited to loss-of-function screens that 
target negative regulators3; more challenging are 
gain-of-function screens for the identification of 
positive regulators of T-cell function. Legut et al. 
conducted a genome-scale gain-of-function screen 
in primary human T cells, discovering genes and 
pathways that boost T-cell proliferation, the pro-
duction of effector cytokines, and tumor killing 
in vitro (Fig. 1).

The authors transduced primary human T cells 
from heathy donors with a lentiviral library con-
taining 12,000 bar-coded genes to determine the 
effect of each gene on T-cell proliferation. (Bar-
coding of genes involves the purposeful inclu-
sion of a unique, short DNA sequence that can 
be thought of as a marker for the gene that ac-
companies it. It is easy to “read” and thus 
analogous to the use of bar codes by shops.) By 
sequencing the bar codes in the most prolifera-
tive T cells, the researchers were able to identify 
and rank candidate genes that drive T-cell prolif-
eration. Some of the top-ranked genes encoded 
known regulators of T-cell proliferation, but sur-
prisingly, the gene with the strongest effect was 
LTBR, which encodes the protein lymphotoxin-β 
receptor (LTBR). This receptor is a member of 
the TNF-receptor family and is typically ex-
pressed on the surface of cells of epithelial and 
myeloid lineages but not on T cells.

Next, they asked whether these genes would 
also improve other aspects of T-cell function, 
including cytotoxicity and the secretion of inter-
leukin-2 and interferon-γ. Indeed, they did, and 
again the strongest effect was observed with 
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LTBR-expressing T cells. In a series of subse-
quent experiments, the authors assessed how 
LTBR works in T cells. They developed a se-
quencing technology called OverCITE-seq, which 
allows for the identification of the overexpressed 

gene and the simultaneous capture of granular 
genetic and molecular data at single-cell resolu-
tion. Combined with epigenetic and functional 
studies, OverCITE-seq revealed that LTBR in-
duces profound genomewide transcriptional and 

Figure 1. Reprogramming the T Cell for Therapeutic Effectiveness.

Tumor-reactive T cells within progressing tumors become dysfunctional owing to persistent tumor antigen encoun-
ter and chronic T-cell receptor (TCR) or chimeric antigen receptor (CAR) signaling and immunosuppressive factors 
in the tumor microenvironment (Panel A). Dysfunctional T cells fail to proliferate and to produce effector cytokines 
or cytotoxic molecules, and they express multiple inhibitory receptors (e.g., programmed death 1 [PD-1] and cyto-
toxic T-lymphocyte–associated antigen 4 [CTLA4]). Positive regulators of T-cell function can be identified by a ge-
nome-scale gain-of-function screening platform (Panel B). Legut et al.2 expressed more than 12,000 genes in primary 
human T cells (1 gene per cell). They selected T cells with the highest proliferative potential and then determined 
the identity of the transduced genes within those T cells. Their top hit, LTBR (the gene encoding the lymphotoxin-β 
receptor), boosted T-cell proliferation, drove novel transcriptional gene circuits and epigenetic programs, and acti-
vated pathways important for T-cell cytotoxic function in vitro.
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epigenetic rewiring, activates the nuclear factor 
κB pathway, and drives the activation of several 
key transcription factors, including one that is 
known to be critical to T-cell self-renewal and 
longevity.

The researchers then tested whether the over-
expression of top-ranked genes could increase 
the antitumor effector function of CAR T cells. 
They expressed LTBR together with (Food and 
Drug Administration–approved) CD19-targeting 
CARs in T cells from healthy donors and in T cells 
from patients with diffuse large B-cell lymphoma. 
LTBR-expressing, CD19-targeting CAR T cells 
from both healthy donors and patients showed 
higher functionality and improved cytotoxicity 
against CD19-expressing tumor cells in vitro. 
These are certainly exciting findings. One ques-
tion that remains is whether genes such as LTBR 
will also be able to turbocharge T cells in vivo, 
in preclinical models, and more importantly, in 
patients with cancer, in whom T cells are ex-
posed to tumor antigen and microenvironmental 
immunosuppression for weeks or even months. 
Moreover, given that these genes drive cell pro-
liferation, is there an increased risk of inducing 
malignant transformation of T cells? Nonethe-
less, the study by Legut et al., in addition to 

other recently published studies of gain-of-
function screens,4,5 highlight the power of large-
scale screening platforms for the identification 
of novel genes for improved next-generation 
cellular therapies, including for the treatment of 
solid tumors, for which effective therapies in-
volving adoptive cell transfer remain a challenge.

Disclosure forms provided by the author are available with the 
full text of this article at NEJM.org.
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