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Pooled CRISPR screens coupled with single-cell RNA-sequencing have
enabled systematicinterrogation of gene function and regulatory
networks. Here, we introduce Casl13 RNA Perturb-seq (CaRPool-seq), which
leverages the RNA-targeting CRISPR-Cas13d system and enables efficient
combinatorial perturbations alongside multimodal single-cell profiling.
CaRPool-seqencodes multiple perturbations on a cleavable CRISPR array
thatis associated with a detectable barcode sequence, allowing for the
simultaneous targeting of multiple genes. We compared CaRPool-seqto
existing Cas9-based methods, highlightingits unique strength to efficiently
profile combinatorially perturbed cells. Finally, we apply CaRPool-seq

to perform multiplexed combinatorial perturbations of myeloid
differentiation regulators in an acute myeloid leukemia (AML) model system
and identify extensive interactions between different chromatin regulators
that can enhance or suppress AML differentiation phenotypes.

Recent technological advances that couple pooled genetic pertur-
bations with single-cell RNA-sequencing (scRNA-seq) or multimodal
characterization (that is, Perturb-seq, CRISPR droplet sequencing,
CRISP-seq and expanded CRISPR-compatible cellular indexing of
transcriptomes and epitopes by sequencing (ECCITE-seq)"™*), prom-
ise to transform our understanding of gene function. In particular,
the ability to perform combinatorial perturbations represents an
opportunity todecode complex regulatory networks, with pioneering
work demonstrating the ability to identify epistasis and other genetic
interactions’”. However, there are specific technical and analytical
challenges associated with pooled single-cell screens that are exacer-
bated when considering combinatorial perturbations. For example,
undetected or incorrectly assigned single-guide RNAs can affect up to
20% of cells®; thisis compounded when multiple independent sgRNAs
are introduced and independently detected in each cell. Moreover,

perturbations introduced by Cas9 are not uniformly efficient, and
a considerable fraction of targeted cells may exhibit no phenotypic
effects of perturbation®’, Therefore, when performing two or more
simultaneous perturbations, the fraction of cells where all perturba-
tions are both successfully introduced and successfully detected can
decrease dramatically.

Type VI CRISPR-Cas proteins, such as the VI-D family member
RfxCasl3d, are programmable RNA-guided and RNA-targeting nucle-
asesthat enable targeted RNA knockdown. Notably, RfxCas13dis also
capable of processing a CRISPR array into multiple mature CRISPR
RNAs (crRNAs)™, presenting an attractive option for combinatorial
perturbations at the RNA level. Recently, we confirmed that RfxC-
asl3dcanleadtostriking target-RNA knockdown, and learned a set of
optimal targeting rules from thousands of guide RNAs tiling multiple
transcripts™. We therefore sought to combine pooled CRISPR-Cas13
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Fig.1|Efficient capture of gRNAs for CaRPool-seq. a, Scheme of direct and
indirect array-based gRNA capture approaches. Direct capture uses areverse
transcription (RT) handle added directly downstream to the gRNA. For the
indirect capture method, abcgRNA is captured as a cleavable part of a CRISPR
array. Three different CRISPR array configurations (A, Rand X) have been
tested (bc, barcode; PCR, PCR primer annealing site; A, array; R, reversed array
configuration; X, extra PCR handle). b, Density plots showing the CD46-APC
signal on Cas13d-mediated CD46 knockdown (red) and dCas13d-mediated
controls (white) using the four CaRPool-seq configurations described ina,
aswell as standard gRNA. The CS1reverse transcription handle was used in

all cases. N > 5,000 cells examined per sample. ¢, PCR amplicons of reverse-

Mouse bcgRNAs

transcribed crRNAs from lentivirally infected cells used in b of one representative
experiment. Expected product sizes: Direct capture 109 bp, A-type and R-type
array 99 bp, X-type array 52 bp, unprocessed A-type array (159 bp). d, Species-
mixing experiment profiling 2,387 HEK293FT-Cas13d or mouse NIH/3T3-Cas13d
cellslentivirally transduced with CRISPR array virus. The CRISPR array includes
aNTgRNA and abcgRNA in X-type configuration. Axes show the number of
transcripts associated with each cell barcode. Datapoint colors and boxed

labels are assigned based on transcriptome classification (Methods). e, Number
of bcgRNAs associated with each cell barcode. Datapoint colors are based on
transcriptome classification, and boxed labels are based on observed bcgRNA.

screens with single-cell readouts to perform combinatorial and mul-
timodal pooled genetic screens.

Results

Engineered CRISPR arrays enable Cas13 gRNA capturein
single cells

Our method for Cas13 RNA Perturb-seq (CaRPool-seq) isenabled viaan
optimized molecular strategy to deliver individual or multiple gRNA
perturbationsin eachcelland detect their identity during a single-cell
sequencing experiment. Type VI-A, Cand D Cas13 crRNAs consist of a
short 5’ direct repeat and a variable spacer (also called gRNA) at the 3’
end, and therefore lack a common priming site for reverse transcrip-
tion (RT). We developed two alternative approaches for Cas13 gRNA
detection: (1) ‘direct’ capture, which adds a ‘capture sequence’ to the
3’ end of the 23-nt target spacer (Fig. 1a); and (2) an ‘indirect’ capture
strategy, where a dedicated crRNA of the CRISPR array contains an
array specific barcode (barcode gRNA, bcgRNA) with different posi-
tional configurations of the bcgRNA within a CRISPR array (Fig.1a). We
evaluated the performance of each method by targeting cell surface
proteins and measuring knockdown via flow cytometry (Fig. 1b and
Extended DataFig.1), and by quantifying crRNA detection viaPCR with
reverse transcription (Fig. 1c). While all methods successfully induced
robust knockdown (Fig. 1b), we found that indirect guide capture with
anoptimized configurationresulted in the strongest crRNA transcript

detection ability (configuration X, Fig. 1c), for both catalytically active
and inactive Casl13 proteins.

These results demonstrate that RfxCas13d crRNAs can be modi-
fied by adding acommon reverse transcription handle either directly
tothe gRNA orasaseparate bcgRNA as part of a CRISPR array, allowing
for reverse transcription and amplification. Notably, our strategy for
indirect detection is well-suited for delivering multiple gRNAs into
asingle cell alongside a detectable bcgRNA that encodes the collec-
tive identity of these perturbations. In addition, using a unique set of
reverse transcription handle and Illlumina PCR priming sequence in
our modified crRNA (Extended Data Fig. 2) ensures that these pertur-
bations can be detected not only alongside scRNA-seq, but also when
profiling additional molecular modalities (for example, CITE-seq" for
simultaneous transcriptome and surface protein profiling).

As proof of principle, we first tested the ability of CaRPool-seq
to detect and assign bcgRNAs in a single-cell species-mixing experi-
ment. We separately transduced RfxCas13d-expressing humanembry-
onic kidney 293FT (HEK293FT) and mouse NIH/3T3 cells with a viral
pool of three CRISPR arrays containing a nontargeting (NT) gRNA
and a species-specific bcgRNA. We profiled a mixture of human and
mouse cells with the 10X Genomics Chromium system (v.3), aiming to
detect both cellular transcriptomes and the bcgRNAs. Of 2,387 cells,
we found that 78.5% expressed a single bcgRNA (1.1% >1 bcgRNAs;
20.4% no detected bcgRNA). Moreover, we observed extremely high
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Fig.2| CaRPool-seq enables combinatorial gene targeting with a multimodal
single-cell readout. a, CaRPool-seq can be combined with CITE-seq and Cell
Hashing modalities. b, Violin plots depicting protein expression of target genes
(ADT UMI counts for CD46, CD55, CD71), grouped by CRISPR arrays (n =29;
median number of cells 269; s.d. 97 cells). Three dashed lines indicate 50, 25

and 12.5% UMI count relative to the median of all NT cells. Diamonds indicate

the median UMI count. The number above each violin plot indicates the mean

level of reduction across single cells. CD71 + CD71was not included in the
experiment. ¢, UMAP visualization of single-cell protein expression profiles
of CaRPool-seq experiment (n = 6,986 cells). Cells are colored based on the
single or combinatorial perturbations they received. d, Expression levels of
bcgRNA (black), mRNA (blue) and protein (ADT, green) for CD46, CD55, CD71
superimposed on the UMAP visualization (n = 6,986 total cells).

concordance between RNA and bcgRNA labels in singlet cells (99.2%)
(Fig. 1d,e). These numbers demonstrate that CaRPool-seq enables
pooled perturbation screens that can be efficiently and accurately
demultiplexed into a single-cell readout.

CaRPool-seq enables combinatorial gene targeting with
multimodal single-cell readout
Next, we tested the ability of CaRPool-seq to distinguish combinatorial
perturbations on multiple molecular modalities at single-cell resolu-
tion. We designed gRNAs targeting three cell surface proteins, CD46,
CD55and CD71, aswellasNT gRNAs. We created 29 crRNA arrays (Sup-
plementary Tables1and 2), each of which contains up to three gRNAs
andabcgRNA, allowing for the perturbation of these genes individually
or in combination. We transduced HEK293FT cells with a viral pool of
all crRNAs and performed CaRPool-seq with CITE-seq™ readout (Fig.
2aand Extended Data Fig. 3a), allowing the assessment of each pertur-
bation on both the cellular transcriptome and antibody-derived tags
(ADTs) associated with CD46, CD55 and CD71 surface protein levels.
We obtained 9,355 single-cell profiles and demultiplexed theminto
groups based on the detected bcgRNA (Extended Data Fig. 3b; 74.7%
expressed asingle bcgRNA, 80.8% expressed at least one bcgRNA). We

observed, onaverage, a76.5% (+5.7%) meanreduction in protein levels
for each targeted gene after perturbation with Cas13 demonstrating
clear evidence of robust molecular perturbation (Fig.2b-d). Moreover,
the strength of knockdown was similar for multi-gRNA crRNA arrays
relative to single gRNA perturbations (Fig. 2b and Extended Data Fig.
3c-e). When examining transcriptomic pseudobulk profiles for all 26
targeting gRNA groups, we observed decreased messenger RNA expres-
sion for each targeted transcript, even when perturbing transcripts of
three genes simultaneously (15examplesin Extended DataFig. 3f,g). The
average strength of transcriptomic knockdown (mean 65%, s.d. 8.7%)
was consistently reduced compared to the observed proteinreduction.
Target RNAs are continuously being produced and degraded before
the target can be translated into protein. Further, analogous to how
Cas9-nuclease targeting often produces RNAs degraded by nonsense
mediated decay", itis possible that Cas13 cleavage produces RNAmol-
eculesthat canbe detected by scRNA-seq but cannot be translated into
functional protein, suggesting that the level of measured RNA knock-
down underestimates the phenotypic effect of Casl13 perturbation.
We performed several analyses to demonstrate that
Cas13d-mediated gene knockdown does not introduce notable
off-target effects or deleteriously alter cellular fitness. We identified
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Fig. 3| Benchmarking CaRPool-seq against alternative combinatorial
perturbation approaches. a, Plasmid vectors for lentivirus production for triple
perturbation scenarios comparing CaRPool-seq and Direct Capture Perturb-
seq®. b, Fraction of cells where the correct combination of gRNA was detected
forsingle, double and triple perturbations. The dashed gray line represents
atheoretical extrapolation based on an assumption ofindependent sgRNA
detectionwith P=0.81(ref. ). ¢, Relative expression of cell surface proteins CD46,
CD55and CD71in cells with assigned NT (s)gRNAs or acombination of three
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targeting (s)gRNAs (NT, n =448, 711, 510, 577; CD46/CD55/CD71, n = 874, 55,142, 89
for Cas13d, Cas9-nuclease, KRAB-dCas9 and KRAB-dCas9-MeCP2, respectively).
The expression level of each target is normalized to NT control. Bars indicate
mean across cells with s.e.m. error bars. d, Protein level ADT-based clustering of
single-cell expression profiles of merged CaRPool-seq (n = 6,986), Perturb-seq
experiments using Cas9 (n =2,836), KRAB-dCas9 (n =2,911) or KRAB-dCas9-
MeCP2 (n =3,038). Cellsare colored by perturbation technology. e, As for d. Cells
are colored based on the single or combinatorial perturbation received.

eight genes whose sequence contains potential off-target binding
sites forany of our three perturbations, but found that the expression
of these genes was not significantly changed in our CaRPool-seq data
(Extended Data Fig. 4a). We also performed CD55 target knockdown
followed by more sensitive bulk RNA-seq and found no evidence for
elevated levels of Cas13d off-targets (Extended Data Fig. 4b and Sup-
plementary Table 3). In addition, previous reports have suggested
thatexpression and target-dependent activation of Cas13d caninduce
broad nonspecific degradation of cytoplasmic and nuclear mRNA, and
areduction in cellular proliferation or fitness®. Notably, transcripts
of mitochondrial genes have been suggested to be at least partially
protected from Cas13d collateral activity”. Hence in the presence of col-
lateral activity, mitochondrial genes may appear relatively upregulated
compared tonuclear and cytoplasmic genes. Therefore, we compared
mitochondrial gene expression levelsin cells that have received one or
moretargetinggRNAs compared toNT control cells (Extended Data Fig.
4c¢),and did not observe upregulationin our CaRPool-seq data. Last, we
classified cell cycles stage for each cell, and found no differencein cell
cycledistributions (indicative of their proliferation state) compared to
NT control cells (Extended Data Fig. 4d-f). Our findings likely reflect
CaRPool-seq’s controlled delivery of Cas13d and gRNAs using single
integration lentiviral systems instead of transient overexpression,
whichis consistent with the suggestion that lower and more controlled
Casl3 expression can mitigate collateral activity'®.

CaRPool-seq efficiently recovers cells with multiple
perturbations

We next benchmarked the performance of CaRPool-seq against
direct capture Perturb-seq® using three different Cas9 effectors:

Cas9-nuclease, a first-generation CRISPR inhibition (CRISPRi) sys-
tem, Kriippel associated box (KRAB) fused to dCas9 (refs. ") and
asecond-generation, dual-effector CRISPRi system, KRAB-dCas9-
MeCP2 (refs.’®'). In CaRPool-seq one bcgRNA encodes the combined
gRNAidentities, while direct capture Perturb-seq requiresindependent
detection of one sgRNA feature per perturbation (Fig. 3a). We replicated
our previously described experimental system, targeting the same
three cell surface markers (CD46, CD55 and CD71) alone or in combi-
nation. For each target, we evaluated three sgRNAs from established
CRISPR-KO? and CRISPRi* sgRNA libraries (Extended Data Fig. 5a)
and selected the best sgRNA for Perturb-seq (Extended Data Fig. 5b).
Inaddition, we used Cell Hashing? to label cells targeted with vectors
encodingsingle, double or triple perturbations. Asin CaRPool-seq, we
quantified gRNA, RNA and ADT levels in each cell.

Our benchmarking analysis found that, in contrast to CaRPool-seq,
alternative Cas9-based approaches struggled to efficiently identify
and detect combinatorial perturbations (Fig. 3b). For example, in
the KRAB-dCas9-MeCP2 experiment, we recovered 1,570 cells that
received vectors targeting three genes. Among these cells, only 779
(49.6%) were associated with the correct three sgRNA after sequenc-
ing. In the remaining cells, we detected too few perturbations (zero,
oneortwo gRNAs, 31.2%), too many (four or more gRNAs 10.0%), or an
improper combination of three gRNA (9.2%). This observed drop-offis
fully consistent with the theoretical expectation of recovery for mul-
tiple independently detected gRNAs and highlights the challenge of
efficiently profiling multiple perturbations with existing approaches.
Since CaRPool-seq associates combinatorial perturbations with asingle
bcgRNA, the efficiency of detection does not vary between single and
multiple perturbations.
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We next compared the strength of perturbation across methods.
We first considered cells where three perturbations were successfully
detected based oneither the bcgRNA (CaRPool-seq) orindependently
detected gRNA (Perturb-seq). When considering these cells, all methods
successfully induced a similarly strong depletion of all three surface
proteins (Cas13d 74.5%, Cas9 75.5%, KRAB-dCas9 75.2%, KRAB-dCas9-
MeCP2 77.3%) (Fig. 3c and Extended Data Fig. 5¢,d). We next analyzed
all cells based on their ADT levels. CaRPool-seq and Perturb-seq cells
clustered together (Fig. 3d), and grouped by gRNA identity (Fig. 3e and
Extended DataFig. 5e), again demonstrating that the strength of pheno-
typic protein perturbation was similar across allmethods. We conclude
that CaRPool-seq and Perturb-seq canboth effectively introduce combi-
natorial perturbations into single cells. However, CaRPool-seq exhibits
clearadvantagesinthe ability to successfully identify and detect these
perturbations and therefore represents an attractive approach for
performing combinatorial single-cell CRISPR screens.

Apooled RNA-targeting CRISPR screenidentifies genes
involved in acute myeloid leukemia (AML) differentiation

To demonstrate the throughput and potential of CaRPool-seq to char-
acterize genetic interactions, we performed a multiplexed screen of
158 combinatorial gene pairs. Motivated by recent work?, we aimed to
characterize potential interactions between previously identified regu-
lators of leukemic differentiation, which can influence the response
to chemotherapy and small-molecule drugs. We generated a human
MLL-AF9 NRAS®?® AML cell line (THP1 cells), with a stably integrated
doxycycline-inducible Cas13d cassette, as a model system. We first
performedabulk Cas13d CRISPR screen using atargeted library of 439
genes with ten gRNA per gene. On day 13-16 post-Cas13d induction,
cells were sorted into bins based on their surface expression of CD14
and CD11b,immunophenotypic markers of monocyte differentiation.
By comparing gRNA representation between low and high-expressing
bins, we selected 26 genes that influenced differentiation consistently
across multipleindependent gRNAs and that have also beenidentified
previously in orthogonal pooled Cas9 screens” (Extended Data Fig.
6a-hand Supplementary Table 4). Through individual perturbations
withaflow-cytometryreadout, we found that target gene perturbations
led to detectable CD11b expression changes after 3 days (Extended
DataFig. 6i). Consistent with previous work”, these genes were largely
associated with DNA-binding and chromatin remodeling functions,
and include a subset of previously identified regulators of AML dif-
ferentiation.

CaRPool-seqidentifies geneticinteractionsin AML
differentiation

We next applied CaRPool-seqto test the effects of combinatorially per-
turbing these regulators (Fig. 4aand Extended Data Fig. 7a). We infected
cellswithapooledlibrary of 385 crRNA arrays. This library encoded 28

single perturbations (26 regulators and two negative control genes)
and 158 paired perturbations. It also encompassed technical replicates
for each perturbation using two independent gRNAs, as wellas NT
controls. We profiled the transcriptome, cell surface protein levels and
gRNA expression for 31,308 demultiplexed single cells.

We first compared the level of surface protein expression for each
perturbation to NT controls (Extended Data Fig. 7b). As expected, we
found that each single-gene perturbation affected CD11b expression,
with observed log, fold changes that wereinstrong agreement withthe
level of gRNA enrichment from bulk CRISPR screens (R = 0.86; Fig. 4b,
Extended Data Fig. 7c—e and Supplementary Table 5). Observed log,
fold changes for all perturbations were also reproducible (R =0.82,
Extended Data Fig. 7f) across technical replicate perturbations when
comparing effects measured for independent gRNAs. We next com-
pared the observed effects of the 158 dual gene perturbations to the
effects resulting from the two corresponding single perturbations. We
observed a strong correlation and found that the dual perturbation
was typically stronger than the average of individual knockdowns, but
weaker than the product (Fig. 4c). We also observed both synergistic
and dampening effects. For example, individual knockdown of the
histone demethylase KDMI1A (log,fold change (FC) 2.41) and the his-
tone deacetylase HDAC3 (log,FC 0.53) lead to strong and weak CD11b
upregulation, respectively, but dual perturbation led to a synergistic
effect (log,FC2.85).In contrast, while individual knockdown of EP300
alsoleadsto CD11b upregulation (log,FC1.57), dual perturbation with
KDMI1A (log,FC 2.05) was weaker than the individual KDM1A knock-
down. We observed similar findings using data from our Cas13d CD11b
pooled screen (Extended Data Fig. 7g and Supplementary Table 5).
To further validate the synergistic relationship between KDM1A and
HDAC3 we infected KRAB-dCas9-MeCP2 expressing THP1 cells with
multiple independent sgRNAs and measured CD11b and CD14 cell
surface protein expression 7 days postinfection using flow cytometry.
Again, we observed synergistic upregulation of both surface markers
(Fig. 4d) after dual perturbation.

We next explored the transcriptional profilesin our CaRPool-seq
dataset. We first sought to orthogonally validate the transcriptomic
signatures we observed on perturbation of single genes by comparing
with alternative technologies and datasets. We found that the differen-
tial gene expression signatures for single-gene perturbations obtained
using ECCITE-seq (5’ scRNA-seq, Cas9 perturbation)* can be readily
reproduced in our CaRPool-seq (3’ scRNA-seq, Cas13d perturbation)
data (Extended DataFig. 8a,b). These differentially regulated gene mod-
ules were typically associated with genetic programs associated with
the differentiation and function of myeloid cells (Extended Data Fig.
8c¢). To further explore comparisons between human hematopoiesis
and ourinvitro model system, we integrated our CaRPool-seq dataset
withanscRNA-seqreference of hematopoietic progenitors and mature
myeloid cells from the Human Cell Atlas and Human Biomolecular Atlas

Fig. 4| CaRPool-seqidentified genetic interactions in AML differentiation.

a, Timeline for THP1 cellinfection, CaRPool-seq and pooled screen for CD11b
expression. Pooled lentivirus library encodes 385 CRISPR arrays, with 158 gene
pair perturbations, 28 single-gene perturbations (each with two nonoverlapping
gRNAs (technical replicate); single, gene_gl/NT_g2 and NT_gl/gene_g2; pair,
geneA_gl/geneB_g2 and geneA_g2/geneB_gl) and 13 NT controls. b, Correlation
of bcgRNA enrichment in the pooled screen (CD11b"&"'**) and CD11b ADT log,FC
for cells grouped by bcgRNA cells relative to control cellsin CaRPool-seq.c,
Correlation of CD11b ADT log,FC of cells with dual perturbations, and the mean
log,FC of both single perturbations (n = 158 gene pairs). Residuals indicate

the distance to the average linear relationship. d, Relative cell surface marker
expression. Monoclonal THP1KRAB-dCas9-MeCP2 cells were infected with
dual sgRNA lentiviral particles, carrying 0,1 or 2 targeting sgRNAs (NT + NT n=3;
KDMIA + NT n=6; HDAC3 + NT n = 6; KDMI1A + HDAC3 n =13 combinations).
Puromycin-selected cells were stained for CD11b (top, PE-Cy7) and CD14
(bottom, APC) 7 days posttransduction. Shown is the mean fluorescence
intensity (>5,000 cells per sample) for each sample compared to the mean

fluorescence intensity of the three NT samples (one-tailed ¢-tests). e, Diffusion
map showing THP1 CaRPool-seq cells integrated into a subset of a human bone
marrow reference (see Methods). Pseudotemporal ordering was performed
jointly on all cells and is shown for CaRPool-seq (n =30,707) separately. f,
Pseudotime quantification of singly perturbed cells (total cells, n = 2,612; single-
gene perturbation, median n =74 cells; s.d. n =86 cells). g, Regression model
results decomposing the observed dual perturbation responses as alinear
combination of single-gene perturbation responses (Methods). h, Comparison
oftranscriptional responses for dual versus single perturbation. Heatmap shows
deviationin average gene expression relative to unperturbed cells for the 20
most significantly regulated genes (Wilcoxon’s rank-sum test). Average heatmap
(top) is accompanied by single-cell gene expression heatmap (bottom) (HDAC3
n=96cells, KDM1A n =36 cellsand HDAC3 + KDM1A n = 99 cells). i, CaRPool-seq
diffusion map as in e highlighting cells that have received indicated gRNAs. j,
Quantification of pseudotemporal ordering of perturbed cells. Boxesind and f
indicate the median and interquartile ranges, with whiskers indicating 1.5 times
theinterquartile range.
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Project?*?, aligning CaRPool-seq THP1cells to their closest neighbors  but thatsingle perturbations (that is, KDM1A, GFI1, GSE1) pushed cells
inthereference dataset, and constructing ajoint differentiationtrajec-  further down the differentiation trajectory (Fig. 4f), consistent with
tory (Fig. 4e). We found that NT control cells localized to early points,  their role in enhancing leukemic differentiation.
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Fig. 5| Stable RNA structures improve bcgRNA detection in CaRPool-seq
experiments. a, Model of 3’ exonucleolytic decay of bcgRNAs when embedded
in CRISPR-Cas13d ribonucleoprotein complex. RT represents the reverse
transcription handle. b, UMAP visualization of single-cell protein expression
profiles of CaRPool-seq experiment (n =1,770 cells). The experiment included
four different gRNAs (NT control, CD46, CD55 and CD71) in combination with
one out of seven different stabilizing elements. Cells are colored based on the
single perturbations they received. ¢, UMAP visualization of single-cell protein

d [l cD46 [ cb55 M CD71 [ NT

Stab.

RNA structure 1,000 4

300 -

- P b

umi

® evopreQ,

expression profiles of CaRPool-seq experiment as shown inb. Cells are colored
based on the structured RNA element they received (no stabilizing element
(standard) or one of the six shown in Extended Data Fig. 9a). d, UMI counts for
the assigned bcgRNA for each cell separated by target gene and RNA stabilizing
element. UMI counts >2,000 are not shown. Boxes indicate the median and
interquartile ranges, with whiskers indicating 1.5 times the interquartile range
(total cells n =1,770; conditions n = 28; cell per condition, median n = 63 cells; s.d.
n=30cells). ZIKV, zika virus.

We applied a recent pioneering framework’ that fits a regression
model to decompose the observed perturbation responses in doubly
perturbed cells as a linear combination of single-gene perturbation
responses. The fit and coefficients of this model describe multiple types
of genetic interaction, including epistasis, genetic suppression and
synergisticrelationships. Fitting these models to each of our pairwise
perturbations revealed a diversity of genetic interactions, which we
broadly clustered into four groups (Fig. 4g). For 33 gene pairsin cluster
1, we saw that eachindividual gene’s profile contributed equally to the
dual perturbation response and the linear model exhibited a strong fit.
Asapositive control, many of the pairsin this cluster represented per-
turbations of two proteins in the same complex (thatis, MED14/MED24,
SUPT16H/SUPT6H), which show similar gene expression responses
for singly and doubly perturbed cells (Extended Data Fig. 8d-f). This
cluster also represented pairs of proteins residing in separate com-
plexes (MED24/SMARCDI of mediator and SWI/SNF complexes), which
share similar perturbation signatures (Extended Data Fig. 8d). Dual
perturbation of KDM1A and the transcriptional repressor GSElalso fell
in this cluster (Extended Data Fig. 8f), consistent with previous work
thatsuggests a cooperative interaction via colocalization at repressed
promoters to inhibit myeloid differentiation®.

In cluster 4, we identified genetic interactions where one gene’s
effect appeared to dominate over the other. We generally observed
that transcriptional responses varied widely when pairing KDM1A
knockdown with different chromatin regulators. For example, we
found that the EP300-signature appeared more strongly than the
KDMI1A-signature when combinatorial perturbing both genes
(Extended Data Fig. 8g). Dually perturbed cells exhibited higher expres-
sion of progenitor genes (that is the progenitor marker AZU1), and
reduced expression of differentiated marker genes (that is, myeloid
marker SI00A4) compared to individual KDM1A perturbation. In con-
trast, the KDM1A response signature dominated when paired with
perturbation of the polycomb repressive complex member RING1
(Extended Data Fig. 8h). Dual perturbation of HDAC3 enhanced the
KDMIA transcriptional response signature (Fig. 4h), consistent with
our previously described immunophenotypic results for these cells
(Fig. 4c). This transcriptional response led dually perturbed cells to
be distributed at later segments of our integrated myeloid differen-
tiation trajectory, exhibiting enhanced differentiation compared to
either single perturbation (Fig. 4i,j). These findings support and pro-
vide a molecular explanation for recent observations that combina-
tion therapies of KDM1A antagonist and HDAC inhibitors exhibit an
enhanced response”. Moreover, we identified additional synergistic

combinations between HDAC3/GFI and HDAC3/GSE1, both of which
enhanced the expression ofimmunophenotypic markers (Fig. 4c), as
well as transcriptional differentiation state (Fig. 4j).

Stable RNA structures improve bcgRNA detection

While our paper was in review, Nelson et al.*° reported that the inclu-
sion of structured RNA motifs on prime editing gRNAs (pegRNAs) led
to protection from exonuclease degradation, increased stability, and
enhanced efficiency. While we expect that crRNA are typically protected
from degradation while complexed with Casl13 (refs. **%), the ends of
longer bcgRNA molecules may still be accessible and susceptible to
degradation. These ends include reverse transcription priming sites
that are essential for CaRPool-seq bcgRNA detection. Therefore, we
tested the addition of stably structured stabilizing RNA elements at
the3’end of the bcgRNA to antagonize nucleolytic decay (Fig. 5a). We
tested six different structures (Extended Data Fig. 9a), and repeated
our benchmarking experiment targeting CD46, CD55 and CD71in
HEK293FT cells. While protein knockdown was indistinguishable for
all six structures (Fig. 5b,c and Extended Data Fig. 9b), we found that
two elements (Zika virus-derived xrRNA1 dumbbell*’; evopreQ, pseudo-
knot**) led toarobustincrease inbcgRNA unique molecular identifier
(UMI) counts (Fig. 5d). In particular, the evopreQ, pseudoknot element
led to asixfold higher bcgRNA detection UMI counts compared to our
initial design (Extended Data Fig. 9¢c). The increased sensitivity also
systematically improved the signal-to-noise ratio to distinguish true
bcgRNA UMI counts from spurious secondary bcgRNA UMI counts
(Extended Data Fig. 9d). This modified bcgRNA structure therefore fur-
therimproves the performance of CaRPool-seq, and is recommended
for future experiments.

Discussion
Here, we present CaRPool-seq, a flexible method for perform-
ing CRISPR-Cas13 RNA-targeting screens with a single-cell
sequencing-based readout. We introduced an optimized strategy to
deliver multiple gRNA as part of a single CRISPR array, which is sub-
sequently cleaved into individual crRNAs. We demonstrate that this
strategy is well-suited for performing combinatorial perturbations,
whose identity is encoded in a single barcode that can be reliably
detected alongside multiple molecule modalities including sScRNA-seq
and CITE-seq.

Through benchmarking, we show that CaRPool-seq is more
efficient and accurate when assigning multiple perturbations in
single cells when compared to Cas9-based technologies. Even with
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individual perturbations, the user can still benefit from CaRPool-seq.
In particular, as an RNA-targeting enzyme, Cas13d can be uniquely
applied to target specific RNA isoforms, or even circular, enhancer
or antisense RNA molecules. RNA-directed approaches may also be
optimal when targeting a single member of alocal gene cluster, where
alternative KRAB-mediated repressive strategies may ‘spread’ and
introduce off-target effects®. CaRPool-seq can profile additional cel-
lular modalities such as cell surface protein levels and, in the future,
can be extended to additional molecular modalities including intra-
cellular protein levels and chromatin accessibility. Moreover, the
strategy of introducing multiple perturbations through cleavable
arraysis extendable to other CRISPR systems, including Cas12 (ref.*°)
and Cas7-11 (ref.”), and represent promising extensions of this work.
And as combinatorial screens scale rapidly, we note that CaRPool-seq
is compatible with pioneering approaches for targeted scRNA-seq,
including hybridization-based 10X Targeted Gene Expression Panels®
or multiplexing PCR-based approaches®,

There are current limitations with CaRPool-seq that may be over-
comeby future advances. For example, RNA-targeting CRISPR proteins
cannot currently activate gene expression through transcription or
translation in mammalian cells*. Additionally, our work suggests a
pooled cloningstrategy for medium-sized CaRPool-seq CRISPR arrays;
however, further optimizations may be required for long arrays with
very large numbers of targeting gRNAs. Lastly, while we did not observe
direct or indirect evidence for RfxCas13d’s promiscuous collateral
activity in our CaRPool-seq experiments, other RNA-targeting CRISPR
effectors®*** may represent an alternative for future experiments.

Combinatorial screens have the potential to shed substantial
new light on the structure of genetic regulatory networks, and also
to identify combinatorial perturbations that achieve desirable cel-
lular phenotypes. Our CaRPool-seq analysis of AML differentiation
regulators benefited fromrecently developed computational frame-
works to identify genetic interactions from multiplexed perturba-
tion screens, and these types of data will be valuable resources for
systematic reconstruction of complex pathways and cell circuits.
Moreover, our identification of combinatorial perturbations that
enhanced AML differentiation phenotypes was consistent with pre-
vious identification of efficacious multi-drug therapies, suggesting
that future experiments may help to nominate candidates for com-
bined drug treatments. We conclude that CaRPool-seq represents a
powerful addition to the growing toolbox of methods for multiplexed
single-cell perturbations.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Pooled Cas13d library design and cloning

We design two libraries for pooled cloning, one to identify genes that
lead to THP1 cell differentiation (Extended Data Fig. 6) and one for
combinatorial targeting with CaRPool-seq (Fig. 4).

First, we designed a RfxCas13d gRNAs library for single gRNA
expression targeting 439 individual genes. We selected 240 genes that
led to CD11b or CD14 upregulation in Cas9 screens®, in addition to
199 control genes in TLR4-signaling. We selected the transcript with
the highest isoform expression (CCLE, https://sites.broadinstitute.
org/ccle/datasets) per gene and designed gRNAs using our Cas13de-
sign algorithm™. For each gene, we selected ten gRNAs from efficacy
quartile Q4 (or Q3), spread along the coding region. Selected gRNAs
had no secondary target sites with 0-2 mismatches to the cognate
site””. Intotal, we designed 4,390 gRNAs and 410 NT control gRNAs (>3
mismatches to hgl9-annotated transcripts). Library cloning has been
described before". Inbrief, pooled oligonucleotides (Twist) were ampli-
fied using 8x PCRreactions with eight amplification cycles using direct
repeat-specific forward primer (Supplementary Table 2). Theamplicon
was Gibson-cloned into pLentiRNAGuide_001and pLentiRNAGuide_002
(Addgene nos. 138150 and138151). Complete library representation
with minimal bias (90th percentile/10th percentile crRNA read ratio
of 1.8 for both libraries) was verified by Illumina sequencing (MiSeq).

For the CaRPool-seq library, we manually inspected all gRNA
enrichments from the pooled screen library described above. For
each target genes, we picked the two most enriched (depleted for
CD14/ATXN7L3) gRNAs avoiding overlapping gRNAs. For each gene,
we paired the two gRNAs withan NT gRNA (n = 28 single perturbations,
n=>56 arrays). For 17 genes, we designed all pairwise combinations
(n=136 gene pairs, n =272 arrays). For nine genes we designed a sub-
set of possible gene pairs within the same complex (n = 22 gene pairs,
n=44 arrays). We added 13 NT control arrays. In total, we design 385
arrays with 186 single or double perturbations, each represented by
twoindependent technical replicate gRNA combinations. For the bcgR-
NAs, we designed random 15mer sequences with hamming distance
greater thanfourtoone another. We balanced the relative CRISPR array
abundance by the negative effect on cell proliferation of the targeted
genes and increased the number of array copiesin the pool to minimize
dropoutinthe CaRPool-seq experiment. The oligos for synthesis were
designed in the following way:

PCR-handle::BsmBI-site::gRNA1::DR::gRNA2::Lgul-bridge::b
arcode::BsmBl-site::PCR-handle

Pooled oligonucleotides (Twist, Supplementary Tables 1and 2)
wer amplified using Pfu-Ultra-Il following the manufacturer’s recom-
mendationusing 1 pl of enzyme and 20 ng (1 ng pl™) of the oligo poolin
a50 plreaction 95°C/2 min, 5x (95°Cfor20s,58 °Cfor20s,72 °C for
155s),72°Cfor3 min). Theamplicon was 2x solid phase reversible immo-
bilization (SPRI) purified, followed by BsmBI-digestion and additional
2x SPRI cleanup. All of the product was ligated into BsmBI-digested
pLentiRNAGuide_003 (without evopreQ, sequence element) using
T7-DNA ligase and cloned as described in ref. " with >1,000 colonies
per construct. The resulting plasmid pool was digested with Lgul to
enableligation of the third direct repeat and small RNA-handle to com-
plete the bcgRNA and CRISPR array. The Lgul insert (Supplementary
Table 2) was cloned into pLentiRNAGuide_001, digested with Lgul and
gel-purified (2% eGel). Complete library representation with minimal
bias (90th percentile/10th percentile crRNA read ratio 2.6/4.8), and
correct gene pair to bcgRNA linkage (>94%) was verified by lllumina
sequencing (MiSeq). During library cloning, we noticed two critical
details: alternative polymerase KAPA and QS5 can lead to a stronger
bias in relative array abundance. Further, reducing the number of
PCR cycles with increased oligo pool input amounts can decrease
bcgRNA reassortment. Last, while we chose a two-step cloning strategy,
asingle-step strategy may yield similar results. pLentiRNAGuide_003
has been deposited to Addgene (no.192505).

Pooled CRISPR screening

Pooled Cas13dscreens have been performedasdescribed beforeinref.”,
with minor modifications. Cas13d expression was induced after THP1
cells were fully selected (1 ug ml™ doxycycline). Growth medium with
fresh puromycin, blasticidin and doxycycline was replenished every
2-4 days, and cells were split as needed always maintaining a guide
representation of >1,000x.

For the single gRNA pooled screen, we collected a1,000x% repre-
sentation at 7 and roughly 14 days post-Cas13d induction and before
sorting. After 2 weeks (13-16 days) we stained 15 million cells (roughly
3,000x representation), using FcX-blocking buffer (BioLegend no.
422302; 10 min at room temperature) and followed by either CD11b
(BioLegend clone ICRF44 no. 301322, 4 ul per 1x 10° cells per 100 pl)
or CD14 (BioLegend clone HCD14 no. 325608, 4 pl per 1 x 10° cells
per 100 pl) staining (30 min at 4 °C), and finally resuspending cells
on PBS with DAPI (4,6-diamidino-2-phenylindole) (Sigma no. D9542,
0.4 ng ml™) to detect any apoptotic or dead cells. We sorted the cells
(Sony SH800) based on their signal intensities (CD11b or CD14: low-
est 10-15% and highest 10-15%). Cells were PBS-washed and frozen at
-80 °Cuntil sequencinglibrary preparation. In total, we prepared four
independent transductions (two multiplicities of infection (MOI) and
two alternative direct repeats), performed CD14 sorts for all four trans-
ductionreplicates, and CD11b sorts for three transduction replicates
collecting1x10°to 1.5 x 10° cells per bin.

For the combinatorial perturbation pooled screen, we performed
threetransductionreplicates (MOI10.13-0.20). Eight days post-Cas13d
induction, we collected an input representation (>1,000x coverage)
and stained 20-30 million cells with FcX-blocking, CD11b and DAPI
as described above. Cells were CD11b-sorted (lowest 15% and high-
est 15% signal intensity). Cells were PBS-washed and frozen at -80 °C
until sequencing library preparation. Library preparations for the
single gRNA pooled screen were done as described before". For the
combinatorial targeting pooled screen, we adopted a PCR strategy
similar to the CaRPool-seq bcgRNA readout. Pooled screen readout
PCR1remained unchanged. In PCR2, we amplified the 15 basepair (bp)
barcode sequence using asoluble Nextera-Read1-CSl1 feature capture
primerincluding an optional 28 randomized bases mirroring UMIand
cell barcode, and RPIx Read2i7 index primer. The amplicon was com-
pletedin PCR3 using Feature Sl primer 2 (10X Genomics) and P7 primer.

Pooled CRISPR screen analysis

Raw reads were demultiplexed based on Illumina i7 barcodes using
bcl2fastqand, ifapplicable, by their customin-read barcode usinga cus-
tom pythonscript. For the single gRNA pooled screen, readl sequenc-
ingreads were trimmed to the expected gRNA length by searching for
knownanchor sequences relative to the guide sequence using a custom
pythonscript (https://github.com/hwessels/Cas13). For the combinato-
rial pooled screen, we extracted the first 15bases inread2. For the single
gRNA pooledscreen, we collapsed (FASTX-Toolkit v.0.0.14) processed
reads to count duplicates followed by string-match intersection with
the reference to retain only perfectly matching alignments (average
mapping rate 82.3%, median gRNA count 167). For the combinatorial
pooledscreen, preprocessed reads were aligned to the barcode refer-
ence using bowtie* (v.1.1.2) with parameters-v1-m1-best -strata (aver-
age mapping rate 97%; median barcode read count 635; one barcode
was not detected ininput samples). For each dataset, raw counts were
normalized using a median of ratios method as in DESeq2 (ref. *) and
batch corrected using combat implemented in SVA (v.3.34.0)”. gRNA
and bcgRNA enrichments were calculated building the count ratios
betweenasorting binor timepointand the indicated reference sample
followed by log,-transformation (log,FC). For every gRNA or bcgRNA,
we considered the meanlog,FC acrossreplicates. For the single gRNA
pooledscreen, we used the four best performing gRNAs per target gene
tocalculate the mean log,FC, where we determined best as either high-
estor lowest dependent on the sign of the mean enrichment across all
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ten gRNAs. As we have previously described", we noticed that log,FC
enrichments were generally more pronounced in samples using the
enhanced direct repeat. Consistency betweenreplicates and selected
gRNAs was estimated using Robust Rank Aggregation (v.1.1)**. For the
combinatorial pooled screen, we calculated the mean of bothreplicate
arrays per gene pair. We noticed GFI1 g2 did not lead to strong effects
inthe pooled screenandinthe CaRPool-seq experiment. The technical
replicatearraysincluding GFI1g2 were removed inall analyses. Enrich-
ments are availablein Supplementary Tables 4 and 5 (Pvalues derived
from Robust Rank Aggregation).

Direct capture Perturb-seq

Monoclonal CRISPR-Cas effector protein-expressing cell lines
(Cas9-nuclease, KRAB-dCas9, KRAB-dCas9-MeCP2) were infected
with one of six sgRNA pools (KO-1, KO-2,KO-3 or CRISPRi-1, CRISPRi-2
and CRISPRi-3) (Supplementary Table 1), providing 1-3 sgRNAs in a
single vector and atotal of nine cell line pool combinations. Cell survival
after selectionranged between 1.7 and 5.5% (MOI < 0.1) assuring a high
singleintegration probability. Viral titers were confirmed by measuring
the fraction of BFP-positive cells for pools that have received vectors
carrying 2+ sgRNAs using flow cytometry. Cells were passaged every
2-3 days (replenishing puromycin and blasticidin at each split) main-
taining high sgRNA representation (>1,000x coverage). We confirmed
that >98% of cells were BFP-positive before the 10X experiment. We
performed 10X (Chromium Single Cell 3’ Gene Expression v.3 with
Feature Barcoding technology for CRISPR screening, nos. 1000074,
1000075 and 1000079) 12 days posttransduction. Cells were stained
with a pool of five TotalSeq-A antibodies (0.75 pg per antibody per
2 x10° cells) (Supplementary Table 6) following the CITE-seq proto-
col™ In addition, we used Cell hashing? (Supplementary Table 7) to
track the nine cell line pool combinations. Before the run, cell viability
was determined (=96%). We ran one 10X lane, leveraging our hashed
experimental design loading 38,600 cells. mRNA, sgRNA feature,
hashtags (hashtag-derived oligos, HTOs), protein (Antibody-derived
oligos, ADTs) libraries were constructed by following 10X Genomics
Cell hashing and CITE-seq protocols>?. All libraries were sequenced
together on one NextSeq 75 cycle high-output run.

Direct capture Perturb-seq analysis

Gene expression datawas mapped to the hg38 (ensembl v.97) genome
reference using Cellranger (v.3.0.1). Guide RNA reads were mapped
simultaneously to a sgRNA feature reference (Supplementary Table
1). Before feature mapping, we performed 5’ adapter trimming using
cutadaptto account for varyinglengths of poly-G tracks five prime to
the sgRNA feature (first -g AAGCAGTGGTATCAACGCAGAGTACAT -0
5;then-01-e 0-g XGGGGGGGGGG) and trimmed the resulting reads
to alength of 18 bases. We used CITE-seq-count package (v.1.4.2) for
HTO and ADT quantification. Count matrices were then used as input
into the Seurat R package (v.4.0)* to perform downstream analyses.
We detected 16,842 cells. HTO and sgRNA counts were normalized
using the centered log-ratio transformation approach (margin of 2).
To assign experimental conditions and remove cell doublets, we used
the HTODemux function in Seurat, with default parameters.

For sgRNA assignment, we customized HTODemux to return
identities of second and third sgRNA without changing the underly-
ing modeling approach. We flagged cells with an incorrect number of
expected sgRNAs based onthe HTO pool assignment. Furthermore, we
flagged cells with an unexpected combination of sgRNAs not present
inthe sgRNA pool used to transduce the cells.

For the analysis shown in Fig. 3, we only retained cells with
the correct sgRNA numbers and identities. ADT counts were
log-normalized, before running ScaleData (do.scale=FALSE, vars.
to.regress=Perturb-Seq.approach). PCA was performed on normal-
ized ADT counts using all five features, followed by uniform manifold
approximation and projection (UMAP) dimensional reduction using

four dimensions. To compare target knockdown across Perturb-seq
approachesfor NT cell and cells that received all three (s)gRNAs (CD46,
CDS55,CD71), we normalized cellular ADT counts using median of ratios
across ADT features that were not targeted (CD29, CD56) to derive a
scaling factor per cell, and divided the normalized ADT counts by the
mean ADT counts in NT cells for each Perturb-seq approach.

CaRPool-seq experiments

Wetransduced and treated Cas13d-NLS expressing HEK293FT, NIH/3T3
or THP1 cellsas described inthe Supplementary Information. In the spe-
cies mixing, we used a pool of three bcgRNAs per species together with
NTgRNAs. The HEK293FT CaRPool-seq experimentincluded 29 CRISPR
arrays (Supplementary Table1) barcoding a diverse set of array configu-
rations around four gRNAs that allowed us to assess gRNA positioning
within the CRISPR array, effects of the relative gRNA amount per cell
and combinatorial targeting of multiple RNA transcripts. CaRPool-seq
species mixing and CaRPool-seqwere conducted simultaneouslyin one
lane 0of 10X Genomics 3’ kit. CaRPool-seq was performed on THP1 cells
5 days post-Casl13d induction (1 pg ml™ Doxycycline) using four lanes
ofal0X Genomics 3’ kit. THP1 CaRPool-seqlibrary design and cloning
were described above. Before the runs, cell viability was determined
>95% for each experiment.

The HEK293FT CaRPool-seq experiment was stained with a pool
of five TotalSeq-A antibodies (0.75 pg per antibody per 2 x 10° cells)
(Supplementary Table 6) as following the CITE-seq protocol™. Similarly,
THP1 cells were first treated with FcX-blocking buffer (BioLegend no.
422302,10 minatroomtemperature), before staining cells with apool
of 22 TotalSeq-A antibodies (Supplementary Table 6). To keep track of
the experimentidentity and identify multiplets, samples were hashed
(subsequent to CITE-seq antibody staining) (Supplementary Table 7)
following the Cell Hashing protocol””. mRNA, hashtags (HTOs), protein
(Antibody-derived oligos, ADTs) libraries were constructed by follow-
ing 10X Genomics Cell hashing and CITE-seq protocols>*.

Species mixingand HEK293FT CaRPool-seq experiment libraries
were sequenced together on one NextSeq 75 cycle high-output run.
THP1 CaRPool-seq libraries were sequenced on NovaSeq6000 using
the XP S4 2 x100 v.1.5 workflow. Sequencing reads coming from the
mRNA library were mapped to a joined genome reference of hg38
(ensemble v.97) and mm10 using the Cellranger Software (v.3.0.1), or
to hg38 using Cellranger v.6.0.0 for the THP1 experiment. bcgRNA
library reads were mapped simultaneously to a barcode reference
(Supplementary Table1) using Cellranger. To generate count matrices
for HTO and ADT libraries, the CITE-seq-count package (v.1.4.2) was
used (https://github.com/Hoohm/CITE-seq-Count). Count matrices
were then used as input into the Seurat R package (v.4.0)* to perform
all downstream analyses.

CaRPool-seqlibrary preparation
We used Cas13 CRISPR array configurations of type X (Fig. 1a and
Extended Data Fig. 2). Specifically, the bcgRNA was placed in the last
array positionand entailed aspacer sequence composed of a five-prime
Illumina smallRNA PCR handle, a15merbarcode and a three-prime cap-
ture sequence 1(CS1) compatible with 10X Genomics feature barcod-
ing. This composition allowed the specific amplification of abcgRNA
ampliconwitha unique combination of forward and reverse primers.
Moreover, usage of the lllumina 5" PCR handle allows for efficient
sequencing of the bcgRNA ampliconwith thefirst base of read2 being
the first barcode base. In our last experiment (Fig. 5), we added struc-
tured RNA elements 3’ to the CS1sequence.
CaRPool-seqexperiments were conducted using the 10X Genom-
ics 3’ kit (Chromium Single Cell 3’ Gene Expression v3 with feature bar-
coding technology for CRISPR screening, nos.1000074,1000075 and
1000079). Library construction for bcgRNA derived oligos is outlined
in Extended Data Fig. 2 and largely followed 10X Genomics user guide
CG000184 Rev C with some modifications. Specifically, we eluted the
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GEM-RTin33 pland added 2 pl containing 0.4 pM ADT additive primer
(forbcgRNAs and ADTs) and 0.2 pM HTO additive primer before com-
plementary DNA amplification. The cDNA was purified using 0.6x SPRI
cleanup for mRNA fraction. The supernatant containing ADT, HTO and
bcgRNA cDNA was purified by adding another 1.4x SPRI (0.6 + 1.4 = 2x
SPRI) followed by a second 2x SPRI cleanup. The purified short frag-
ments weressplitinto three pools (for example, 3 x 20 pl). One pool each
was used for HTO and ADT library construction as described before'>*,
Half of the remaining pool (10 pl) was used to construct the bcgRNA
library using two PCR recipes. PCR1 adds Illumina P5and P7 handles to
the bcgRNA amplicon (100 pl of PCR1: 50 pl of 2x KAPA Hifi PCR Mas-
termix, up to 45 pl of bcgRNA PCR template, 2.5 pl of Feature SIPrimers
210 pM, 2.5 pl of TruSeq Small-RNA RPIX primer (containing i7 index)
10 pM;95°C3 min,12x (95°C205,60°C8s,72°C8s),72°C1min). The
1.6x SPRI-purified PCR1 product was amplified in PCR2 (100 pl: 50 pl
of 2x KAPA Hifi PCR Mastermix, up to 45 pl of PCR1 product, 2.5 pl of
PS5 primer10 pM, 2.5 pl of P7 primer 10 pM; 95 °C3 min, 4% (95°C20s,
60°C8s,72°C8s),72°C1min). The final bcgRNA amplicon (203 bp)
can be sequenced with standard Illumina sequencing primers (=28
cyclesreadland =15 cycles read2) (Extended Data Figs. 2 and 3a).

CaRPool-seq data analysis

Cells from species-mixing and HEK293FT CaRPool-seq experiments
were processed together. Cells with <2,500 UMI were removed. HTO
and bcgRNA counts were normalized using the centered log-ratio
transformation approach (margin of 2). We used HTODemux to identify
cell doublets and assign experimental conditions. Only human cells
were hashed, with mouse NIH/3T3 cells being the only cell popula-
tion without a hashtag. We removed all hashing doublets within the
CaRPool-CITE-seq experiment (HTO-01 to HTO-08) and to human
cells in the species-mixing experiment (HTO-10). In addition, we
removed all cells labeled with a single HTO-01 to HTO-08 if the frac-
tion of mouse reads was >10%, and cells without any HTO if not at
least 10% mouse reads were present. Like this, we removed all dou-
blets between CaRPool-seq species mixing and CaRPool-CITE-seq
experiments while retaining potential collisions/doublets within the
species-mixing experiment. At this point, the experiment was splitinto
two separate objects. For the species-mixing experiment, we deter-
mined species identity by quantifying the fraction of human reads for
RNA and for the species-specific bcgRNAs (human >0.9, mouse <0.1,
collision 0.9 to0 0.1). For the HEK293FT CaRPool-CITE-seq experiment
RNA counts were log-normalized using the standard Seurat workflow
after removing all mouse features and RNA counts. bcgRNA identity
was determined using MultiSeqDemux (autoThresh=T). Cells without
abcgRNA assigned and cells with multiple bcgRNA assignments were
removed. Differential expression analyses were done using FindMark-
ers (Wilcoxon’s rank-sum test, pseudocount.use of 1 x 10™). We con-
verted log, fold changes to percent knockdown for each target gene
ineach of the 26 targeting conditions and took the mean to calculated
the average target knockdown,

For the THP1 experiment we detected 52,496 single cells (nFea-
ture_RNA >1,000, nFeature_RNA < 8,000, percent.mt < 20) after HTO
demultiplexing using HTOdemux as described above. Model-based
bcgRNA assignments (HTODemux or MultiSeqDemux) did not yield
satisfying results supported by the observed phenotypic changes,
likely due to model limitations imposed by the high number of bcgRNA
features. Instead, we assigned bcgRNAs to single cells by applying the
following rules: We compared UMI counts for the bcgRNA with the
highest UMI count (gl) to, if present, the second detected bcgRNA
(g2). bcgRNA counts for g2 may derive from spurious counts arising
from library preparation, or from integration of more than one viral
element (bcgRNA multiplet). We considered cells with gl <5 as nega-
tive. We assigned gl if: (1) g1 = (5-9) and g2 = (0-1) or (2) g1 >9 and g1/
(gl+g2)>0.8and g2 <11. All other cells were considered bcgRNA
multiplets. We assigned 31,308 with a single bcgRNA. Comparing

differential gene expression results for technical replicates embedded
in the CaRPool-seq library, we noticed GFI1g2 did not lead to upregu-
lation of CD11b ADT or upregulation of the expected gene expression
signature. We removed all cells with GFI1 g2 (n = 601).

Changes in cell surface protein ADT levels for gene pair or indi-
vidual CRISPR array were calculated using Wilcoxon’s rank-sum test
inFindMarkers relative to NT control cells. Changes were determined
by repeating the differential expression analysis ten times with
<30 randomly samples cells per cell group to account for differing
numbers of cells followed by averaging. We compared differential
CD11b expression between single and dual perturbations by com-
paring the log,-tranformed fold changes of dually perturbed cells
to the log,-transformed mean fold changes of the two single-gene
perturbations.

Cas13d gRNA off-target evaluation

Toidentify potential Cas13d gRNA off-target binding sites we aligned
gRNAs to the human transcriptome (GRCh38 cdna.all and noncoding
RNA fromemsembl release 97) using blastn (v.2.6.0) (megablast) with
the following parameters (-strand minus -max_target_seqs 10,000
-evalue 10,000 -word_size 5 -perc_identity 0.7). Second, candidates
were further filtered to match with at least 17 bases, as shorter matches
donotlead totarget knockdown and show a blastn e.value of <100. In
Extended Data Fig. 4a, we demonstrate that despite the potential for
off-target binding, we do not observe transcriptomic perturbation
for these genes.

Casl13d collateral activity was evaluated by comparing expression
levels of mitochondrial genes”in cells expressing targeting gRNAs versus
NT gRNAs using FindMarkers (Wilcoxon'’s rank-sum test, pseudocount.
use1x107*). Toassess differencesin cell fitness, we classified single-cell
transcriptomes into gene expression programs usually observed at dif-
ferent cell cycle stages (Seurat’s CellCycleScoring), and compared the
distribution of cells per cell cycle stages between groups of cells.

Modeling of genetic interactions in single-cell data
To decompose transcriptomic profiles of double perturbation, we used
alinear regression model as previously introduced’ and implemented
itinR. First, we z-scaled the log-normalized gene expression counts for
all cells with respect to the mean and standard deviation of the control
group (NT cells). Inthis way, we have subtracted the baseline expression
profiles from each cell and can directly compare the deviation from
each perturbationto NT conditions. Next, we grouped cells by gene pair
and calculated pseudobulk z-scaled profiles (single perturbations (a, b),
and double perturbation (ab)) by calculating the mean across cells for
eachfeature. The average NT-cell profile returns a vector of all zeros. We
generated average profiles for 1,530 genes with an average UMI count
>0.5. We included gene pairs when all cell groups were represented
by atleast 25 cells (Examples in Fig. 4g and Extended Data Fig. 8d-h).
As previously introduced’, we model the average z-scale profiles
using:

éab = c,éa + c,6b + €

with éa and 6b being the pseudobulk z-scaled profile for cells
assigned to single perturbations @ and b, repectively, while ab is the
pseudobulk z-scaled profile for cells assigned to double perturbation
ab.c,andc,are constantsfitted to the dataindicating the relative weight
of éa and éb profiles. The vector e collects the residuals to the model
fit. In our plots, ais the first gene in the gene pair and b is the second
gene. ¢, correspondstoa,andc,tob.

We implemented the previously introduced model-fitting pro-
cedure’, using the rlm function from the MASS package (v.7.3-58.1),
and extracted the mean coefficients (c;and ¢,) and residual errore. We
collected six measures to evaluate the fit as described before’ (dcor
functionin energy package v.1.7-10):
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Modelfit: dcor (c,a + c,a, ab)

Dominance: |log;,(c,/c,)I

Magnitude: (c;2 + ¢,2)"?

Similarity of single to double profiles: dcor ((a,b), ab)

Similarity of single profiles: dcor (a,b)

Equality of contribution: min (dcor (a,ab), dcor (b,ab))/max (dcor
(a,ab),dcor (b,ab))

Eachfeature anditsinterpretationare describedin detail inref.’.
Features were scaled (margin of 2) before hierarchal clustering (dist,
euclidean; methods, ward) to generate adendrogram, shownin Fig. 4g.
For clarity, the heatmap in Fig. 4g shows unscaled values.

Theexampleinteractions shownin Fig.4hand Extended Data Fig.
8d-hdepict the union of top 20 differentially expressed genes for each
cellgroup (a, ab) relative to NT cells (selected by Pvalue) derived using
the Wilcoxon’s rank-sum test in FindMarkers. Model prediction and
residuals are derived from the modeling approach described above.
The color scale represents the average z-score normalized expression
per gene pair.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw and processed sequencing data have been made available on the
National Center for Biotechnology Information Gene Expression Omni-
bus under the accession number GSE213957. ECCITE-seq data used in
this study are available at the Gene Expression Omnibus (GSE146469,
ref. ?). Source dataare provided with this paper.
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Extended DataFig. 1| Direct and indirect Cas13 guide RNA capture allow for
robust target knockdown. a) Density plots showing the CD46-APC, CD55-
FITC and CD71-PE flow cytometry signal upon Cas13d-mediated knockdown
with either regular gRNAs or a direct capture gRNA with one of three reverse
transcription handles (pA(30) = polyA-tail of length 30, CS1=10x Genomics
Capture Sequence1, CS2 =10x Genomics Capture Sequence 2, NT = non-
targeting). Vertical lines mark the threshold for CD-protein negative cells (2nd
percentile of NT cell populations), indicating the percent negative cells for

one replicate experiment. Importantly, the Cas13-mediated function shows a
unimodal response, suggesting limited cell-to-cell differences in target gene
knockdown. N >5000 cells examined per sample. Shown is one representative
replicate. b) Summary analysis of biological replicate experiments (n = 3) as
shownin (a). Y-axis shows the mean fluorescent intensity (MFI) relative to the
average of all NT cell populations. Direct capture constructs with CS1or CS2
enable strong knockdown for CD46, but reduced knockdown for CD55 and CD71.
Direct capture with pA-handle shows strongly reduced knockdown efficiency
compared to regular gRNAs (standard condition). Two-sided t-test with * p < 0.05,
**p <0.01,and **p < 0.001. Error bars depict SEM. ¢) Density plots showing the
CD46-APC, CD55-FITC, and CD71-PE signal upon Cas13d-mediated knockdown
with either regular gRNAs, a direct capture gRNA, or indirect capture construct
oftypesA, R, and X as shownin Fig.1a. CS1was used in all constructs with RT-
handle. Type X was used with either a partial TSO (pTSO) PCR priming site or an
Illumina smallRNA PCR-handle sequence. Vertical lines mark the threshold for
CD-protein negative cells, indicating the percent negative cells for one replicate
experiment. N > 5000 cells examined per sample. Shown is one representative
replicate. d) Summary analysis of biological replicate experiments (n = 3) as

shownin (c). Y-axis shows the mean fluorescent intensity (MFI) relative to the
average of allNT cell populations. Indirect capture constructs show strong target
gene knockdown similar to regular gRNAs (standard condition) for all three
target genes. The slight reduction in targeting efficiency inindirect guide capture
may be explained by CRISPR array processing constraints. Two-sided t-test with
*p<0.05,*p<0.01,and ** p < 0.001. Error bars depict SEM. e) Density plots
showing the CD46-APC, CD55-FITC, and CD71-PE signal upon Cas13d-mediated
knockdown with either regular gRNAs, a direct capture gRNA, or indirect capture
construct of type X. Here, comparing the effect and placement of a polyA-tail
RT-handle. pAindicates direct capture construct with polyA-tail. Type X was

used with either a pTSO or smallRNA PCR-handle sequence. Vertical lines mark
the threshold for CD-protein negative cells, indicating the percent negative cells
for onereplicate experiment. N > 5000 cells examined per sample. Shown is one
representative replicate. f) Summary analysis of biological replicate experiments
(n=3)asshownin (e). Y-axis shows the mean fluorescent intensity (MFI) relative
totheaverage of all NT cell populations. Indirect capture constructs show

strong target gene knockdown like regular gRNAs (standard condition) for all
three target genes. Target knockdown with direct capture through a polyA-tail
sequence is limited. Two-sided t-test with*p < 0.05, **p < 0.01, and **p < 0.001.
Error bars depict SEM. g) PCR amplicons of reverse-transcribed crRNAs from
lentivirally infected cells used in (e) showing one representative experiment.
Indirect capture of Type-X crRNAs with smalIRNA PCR-handle and polyA-tail
(arrow) allowed for reverse transcription and amplification. These results

show that indirect gRNA capture can be facilitated with polyA-tail capture as an
alternative to CS1-based capture.
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Extended Data Fig. 2| bcgRNA capture scheme adapted from 10x Genomics Feature Barcoding technology.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| CaRPool-seq enables efficient bcgRNA capture and
specific target RNA knockdown. a) Representative BioAnalyzer traces of cDNA
and four jointly assayed modalities (GEX = gene expression, bcgRNA =barcode
guide RNA, ADT = antibody derived tags, HTO = hashtag oligonucleotides). b)
Stacked violin plot showing normalized bcgRNA UMI counts for cells grouped
by assigned CRISPR array [total cells n = 9,355, cells with single bcgRNA
n=6,986, (74.7%), n = 29 single bcgRNA conditions; median number of cells

269 per condition, s.d. 97 cells]. ¢) Bar plots depicting CD46-APC, CD55-FITC,
and CD71-PE signal upon Cas13d-mediated knockdown with three alternative
gRNAs per target gene relative to the mean of three NT controls measured by
flow cytometry. Y-axis shows the mean fluorescent intensity (MFI) relative to the
average of all NT cell populations. Two-sided t-test with * p < 0.05,** p < 0.01, and
***p <0.001 (N =3replicate experiments; error bars depict SEM). Guide RNA g1
was used in CaRPool-seq experiments. Guide RNAs g2 and g3 are used in figures
(d) and (e). d) Density plots showing the CD46-APC, CD55-FITC, and CD71-PE
signal upon Cas13d-mediated knockdown with either1, 2, or 3 copies of the same
gRNA (g1) per CRISPR array or 2 and 3 alternative gRNAs (g2, g3). Vertical lines
mark the threshold (2nd percentile of combined NT conditions) for CD-protein

negative cells, indicating the percent negative cells for one replicate experiment.

N>5000 cells examined per sample. Shown is one representative replicate.
e) Summary analysis of biological replicate experiments (n = 3) as shownin

(d). Y-axis shows the mean fluorescent intensity (MFI) relative to the average

of allNT cell populations. The Analysis suggests that target gene knockdown
differences between the number of gRNAs per array are more pronounced than
differences between gRNA identities with the same total gRNA count, given

that gRNA efficiencies are comparable as shown in (c). CRISPR arrays encoding
multiple gRNAs against the same target may be used to further enhance target
knockdown. Two-sided t-test with* p < 0.05, ** p < 0.01, and **p < 0.001. Error
bars depict SEM. f) Scatterplots showing normalized pseudobulk RNA UMI
count profiles of cells grouped by indicated CRISPR arrays (y-axis) and control
cells that received non-targeting (NT) gRNAs (x-axis). Respective target genes
(CD46, CDSS5, CD71) are highlighted in color. Genes on the MT chromosome are
colored green. Other significantly differentially regulated genes (Wilcoxon’s rank
sum test; adjusted p-value < 0.05) are highlighted in black. Genes highlighted
inblack showed a median expression change 0f12.8% (s.d. 9.9%). CD71+ CD71
was notincluded in the experiment. g) Volcano plots showing differential gene
expression results cells grouped by indicated CRISPR arrays and control NT cells.
Cells groupingis the same as in (f). The x-axis indicates log-transformed fold
changes. The y-axis depicts -log10-transformed adjusted p-values (Wilcoxon’s
rank sum test). Significantly differentially regulated genes (adjusted p-value <
0.05) are highlighted inred.
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Extended Data Fig. 4 | Evaluation of Cas13d specific off-target effects in
CaRPool-seq. a) Sites, and relative expression levels of gRNA-dependent
predicted off-target transcripts from gRNAs targeting CD46, CD55 and CD71.

Red letters indicate mismatches and indels to cognate perfect match target site.

E-values derived from Blastn. (Wilcoxon’s rank sum test * p.adj. < 0.05, ** p.adj.
<0.01, **p.adj. < 0.001). b) Bulk RNA-seq result for Cas13d, Cas9-nuclease, and
KRAB-dCas9-MeCP2 based targeting of CD55 using three independent CD55-
targeting and NT (s)gRNAs, respectively. Volcano plots show differential gene
expression results of CD55 targeting conditions relative to corresponding NT
conditions grouped by indicated CRISPR effector protein. The x-axis indicates
log-transformed fold changes. The y-axis depicts -logl0-transformed adjusted
p-values (DESeq2). Significant differentially regulated genes (adjusted p-value
<0.05, Wilcoxon’s rank sum test) are highlighted in red. The three approaches
show a varying number of differentially expressed genes in addition to CD55
reduction (n=1Cas13d, n =3 Cas9, n = 30 KRAB-dCas9-MeCP2). Cas13d gRNA
and Cas9 sgRNA efficiency is shown in Extended Data Fig. 3c and Extended Data
Fig. 5a. ¢) Differential gene expression of mitochondrial genes. Differential
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gene expression was assessed between all 26 cell populations expressing gene-
targeting gRNAs and cells expressing a single NT gRNA. Across all differential
gene expression analyses (n =26), none of the 13 mitochondrial genes encoded
on the mitochondrial chromosome was expressed significantly different from
control cells (adjusted p-value < 0.05; Wilcoxon’s rank sum test). The figure shows
the average log2 fold change (FC) across all 13 mitochondrial genes per condition
(n=26) grouped by the number of target genes (left) and number of targeting
gRNAs (right) indicating that observed changes are independent of target RNA
and gRNA amounts. d) Fraction of cells classified into indicated cell cycle stages
for each condition (n =29). Dotted lines indicate the means of the three NT cell
populations. Statistical testing for differences in cell cycle stage assignment for
cell populations targeting e) varying numbers of target genes per cell, or using f)
increasing numbers of gRNAs per cell did not show significant differences to NT
control cell populations expressing zero targeting gRNAs (p-values derived from
two-sided students t-test, not corrected for multiple testing. Barsin (e) and (f)
show mean. Error bars depict SEM. N numbers indicated inside bars).
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Extended Data Fig. 5| Comparison of CaRPool-seq to alternative
combinatorial perturbation approaches. a) Density plots showing the
CD46-APC, CD55-FITC, and CD71-PE flow cytometry signal upon Cas9-nuclease
mediated knockout (KO) and CRISPRi-mediated (KRAB-dCas9, KRAB-dCas9-
MeCP2) knockdown with three alternative sgRNAs from established genome-
wide KO20 and CRISPRi21libraries. Vertical lines mark the threshold (2nd
percentile of combined NT conditions) for CD-protein negative cells, indicating
the percent negative cells for one replicate experiment. Single guide RNAs with
the highest percentage of negative cells (bold) were selected for direct capture
Perturb-seq experiments (NA = sgRNA not assayed). b) Cloning strategy for triple
sgRNA plasmid vectors. Dual sgRNA constructs were cloned as described before

6. The third sgRNA was cloned behind a bovine U6 promoter using an alternative
sgRNA scaffold tested before 6. ¢) Cell surface protein expression (log2-
normalized UMI counts) of CD46, CD55 and CD71in cells assigned with indicated
(s)gRNAs. CaRPool-CITE-seq (n = 4,979 cells) and Perturb-seq experiments
using Cas9-nuclease (n =2,270), KRAB-dCas9 (n = 2,104) or KRAB-dCas9-MeCP2
(n=2,326).d) Contour plots of datashownin (c). e) Protein level ADT-based
clustering of single-cell expression profiles of merged CaRPool-CITE-seq
(n=6,986 cells) and Perturb-seq experiments using Cas9-nuclease (n = 2,836),
KRAB-dCas9 (n=2,911) or KRAB-dCas9-MeCP2 (n = 3,038) effector proteins as
inFig. 3e. Cells are labelled by the assigned target gene combination based on
detected bcgRNA or sgRNAs and split by Perturb-seq.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | A pooled Cas13 screen identifies regulators of AML
differentiation. a) Timeline for THP1 cellinfections and pooled screen readouts
for CD14 and CD11b fluorescent activated cell sorting (FACS). We transduced a
pooled lentivirus library with 4,800 gRNAs targeting 439 genes (10 gRNAs per
gene) and 410 NT control gRNAs. Each gRNA was tested using two alternative
Casl3d direct repeat (DR) sequences [wildtype (WT) or enhanced DR; see
Methods]. Cells were infected at two different MOIs for each DR. Cells were
collected at day 7 (timepoint O; t0) and approximately day 14 (range between
day 14 and day 16; t1) post Cas13d induction. On day 14, cells were sorted based
ontheir cell surface protein expression into CD14 and CD11b high (top 15%)
and low (bottom 15%) bins. At each time point, we collected and sorted cell
populations with >1000x coverage. With alternative MOl infections and DR
sequences used, we conducted four and three replicated phenotypic cell sorts
for CD14 and CD11b. b) Pearson correlation of normalized and batch corrected
gRNA counts for all samples. ¢) Pearson correlation of log2-transformed

gRNA enrichments of the population of interest relative to the corresponding
control population (CD11bhigh/low: gRNA counts in CD11bhigh bin divided by
CD11blow bin; CD14high/low: gRNA counts in CD14high bin divided by CD14low
bin; proliferation: gRNA counts at t1 divided by t0). d) Correlation of log2FC
gene enrichments for CD14 upregulation (CD14high/low) to enrichments
presented in Wang et al. Correlation analysis was repeated for every single
ranked gRNA (see Methods), always considering only one ranked gRNA per
target gene. This analysis indicated that, as expected, target gene enrichments
for CD14 upregulation correlated best with CD14 target gene enrichmentsin
Wang et al., and that correlations were similarly high for the top-ranked 4-5

gRNA. e) Similar analysis as presented in d showing result for target genes
regulating CD11b enrichments. f) Volcano plot showing gene enrichments

for target genes regulating CD14 upregulation (CD14high/low). Each gene
isrepresented as the mean of the four top-ranked gRNAs across all replicate
experiments (see Methods). Y-axis shows -logl0 transformed adjusted p-value
derived from Robust Ranked Aggregation (RRA). Target genes selected based

on previousresults (Wangetal.) are showninred. The 28 genes used in the
subsequent CaRPool-seq experiment are highlighted. As expected, CD14 was
the most depleted gene. g) Similar analysis as presented in (f) showing results
for target genes thatlead to CD11b enrichment. CD11b-targeting gRNAs were
notincluded inthe gRNA library. h) Consistent gRNA enrichment/depletion of
all 28 target genes. (NT = all non-targeting gRNAs, All = all gRNAs, Gene Name
=Red ticks highlighting targeting specific gRNAs atop of the non-targeting
gRNA distribution (n =10 per target gene). Dotted lines indicate the 95 percent
confidence interval for NT gRNA distribution). i) CD11b expression upon
individual gRNA infections for 26 hit genes and three NT controls. Cas13d
expressing THP1 cells were transduced with individual gRNA-delivering lentivirus
targeting one out of 26 selected target genes (gRNA was selected from pooled
screen). Cells were assayed repeatedly (three and six-to-seven days post Cas13d-
induction with doxycycline) for CD11b levels. Y-axis shows the CD11b::PE-Cy7
MFlIrelative to the average of all three NT control samples for the respective time
point. Bars show the mean of two independent replicates (two THP1 Cas13d cell
thawsinfected on separate days). The inset shows CD11b::PE-Cy7 levels in KDM1A
and NT targeted cells three and six days after Cas13d induction.
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Extended DataFig. 7| Combinatorial targeting of AML differentiation
regulators. a) Titration of CaRPool-seq lentivirus four days after transduction.
Viral constructs contain a Puromycin-2A-GFP expression cassette. Density plots
show the percent GFP positive cells compared to the 99th percentile of WT
control cells. The percent GFP-positive cells indicate the MOI. Low-MOl cells
were used in the CaRPool-seq experiment, and high-MOI conditions were used
for pooled screen readout (=3 infections). b) Differential expression analysis
for ADTs of cell surface proteins assayed in the CaRPool-seq experiment. Each
point represents results for one gene pair summarizing the effect across both
independent CRISPR array replicates per gene pair (n =186, single and double
perturbations). To account for differences in cell number per gene pair we
calculated log,FC as the mean of 10 samples of arandom cell using 30 cells (or
all cells for gene pairs <30 cells) per gene pair relative to the same number of
NT control cells. All but two gene pairs show elevated levels of CD11b. Boxes
indicate the median and interquartile ranges, with whiskers indicating 1.5
times the interquartile range. ¢) Density plots showing the CD11b::PE-Cy7

signal of THP1 cells transduced with NT gRNAs or the CaRPool-seq library 8

Gene pair Rep1 (log,FC) Mean log,FC for single perturbations

days post Cas13d-induction. We collected unsorted cells alongside cells sorted
based on CD11b signal collecting the 15% of lowest and highest CD11b signal.

We collected and sorted cell populations with >1000x coverage. d) Pearson
correlation of normalized and batch corrected bcgRNA counts for all samples.
e) Pearson correlation of log2-transformed bcgRNA enrichments of population
of interest relative to the corresponding control population (CD11bhigh/low:
bcgRNA counts in CD11bhigh bin divided by CD11blow bin; CD11bhigh/input:
bcgRNA counts in CD11bhigh bin divided by unsorted input representation;
CD11blow/input: bcgRNA counts in CD11blow bin divided by unsorted input
representation). f) Comparison of log,FC CD11b ADT enrichments relative to NT
cellsin CaRPool-seq data comparing the two technical replicate gene pair arrays.
Shown are all technical replicates where both arrays were represented by at least
25 cells (n =122 gene pairs). g) Correlation of CD11bhigh/low log,FC enrichments
indual perturbation cells and the mean log2FC of both single perturbation cells
corresponding to the dual perturbation (n =158 gene pairs). Residuals indicate
the distance to the average linear relationship. For each gene pair, we used the
mean of both replicate CRISPR arrays.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Transcriptome analysis of combinatorial targeting

of AML differentiation regulators. a) Single-cell gene expression heatmap
showing the 50 most up-regulated (left) and down-regulated (right) genes upon
GFlIl1perturbation (Wilcoxon’s rank sum test) identified in ECCITE-seq data (Wang
etal.). We compared cells expressing non-targeting control gRNAs (NT) and GFI1
targeting gRNAs for CaRPool-seq (top) and ECCITE-seq (bottom), respectively.
The ECCITE-seq data was filtered using mixscape (Papalexi et al. 9) to remove
unperturbed cells prior to identification of the most regulated genes. b) Gene
module scores for the 50 most up-regulated and most down-regulated genes
upon target gene perturbation identified in ECCITE-seq data as described in (a).
The module scores show the average expression of perturbation-specific target
genes per cell comparing cells with the indicated target gene perturbation to
cells with non-targeting control gRNAs (one-tailed Kolmogorov-Smirnov test). c)

EnrichR gene ontology analysis for biological processes (GOBP) for all single-
gene perturbations (n =28) using up to 100 significantly (p < 0.01, Wilcoxon’s
rank sum test) upregulated genes per gene pair compared to NT condition.
Shown are the -log10-transformed adjusted p-values for GO-terms with

p <0.00001 (Fisher’s exact test) in at least one condition. d-h) Comparison of
transcriptional responses for double versus single perturbation. Heatmaps show
deviation in average gene expression relative to unperturbed cells for the 20
most significantly regulated genes (Wilcoxon'’s rank sum test). These heatmaps
visualize arange of observed interactions between gene pairs, including cases
where genes contribute equally to the dual perturbation response (d-f), and
where one gene’s perturbation signature dominates over the other (g-h). Average
heatmaps in g is accompanied by single-cell gene expression heatmap below.
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Extended Data Fig. 9| Structured RNAs canimprove bcgRNA detectionin
CaRPool-seq experiments. a) Nucleotide sequences that can form stable RNA
structures when placed 3’ to abcgRNA. Sequences found in MALAT1and NEAT1
(MENRB) required nucleotide exchanges (shown in red) to remove potential
terminator sequences (>4U) and allow the sequences to be fully transcribed by
RNA polymerase Ill. b) Violin plots depicting protein expression of target genes
(ADT UMI counts for CD46, CD55, CD71), grouped by CRISPR arrays [combination
of target gene (y-axis) and stabilizing RNA element (x-axis); (total cells:n =1,770;
conditions n =28; cell per condition: median n = 63 cells; s.d. n =30 cells)]. Three
dashed lines indicate 50%, 25%, and 12.5% UMI count relative to the mean of all
non-targeting cells by target ADT. The numbers above each violin plot indicate

the medianreduction across single cells for cells with matching gRNA and
target. Diamonds indicate median value of cell population. ¢) Fold enrichment
of bcgRNA UMI counts relative to UMI counts in the standard bcgRNA capture
condition separated by the target gene. The evopreQl element yielded on
average 6-fold higher bcgRNA detection sensitivity (n =4 per condition). Bars
indicate mean. d) UMI Fraction comparing the assigned bcgRNA to the sum of
assigned and second most abundant bcgRNA that may be detected for the same
cell[UMIgl/(UMIgl+UMIg2)]. Boxes indicate the median and interquartile
ranges, with whiskersindicating 1.5 times the interquartile range. (Total cells:
n=1,770; conditions n = 28; cell per condition: median n = 63 cells; s.d.n=30
cells).
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