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Type VI CRISPR enzymes are RNA-targeting proteins with 
nuclease activity that enable specific and robust target gene 
knockdown without altering the genome. To define rules for 
the design of Cas13d guide RNAs (gRNAs), we conducted mas-
sively parallel screens targeting messenger RNAs (mRNAs) of 
a green fluorescent protein transgene, and CD46, CD55 and 
CD71 cell-surface proteins in human cells. In total, we measured 
the activity of 24,460 gRNAs with and without mismatches 
relative to the target sequences. Knockdown efficacy is driven 
by gRNA-specific features and target site context. Single mis-
matches generally reduce knockdown to a modest degree, but 
spacer nucleotides 15–21 are largely intolerant of target site 
mismatches. We developed a computational model to iden-
tify optimal gRNAs and confirm their generalizability, testing 
3,979 guides targeting mRNAs of 48 endogenous genes. We 
show that Cas13 can be used in forward transcriptomic pooled 
screens and, using our model, predict optimized Cas13 gRNAs 
for all protein-coding transcripts in the human genome.

Type VI CRISPR (clustered regularly interspaced short palin-
dromic repeats) enzymes have recently been identified as program-
mable RNA-guided, RNA-targeting Cas proteins with nuclease 
activity that allows for target gene knockdown without altering the 
genome. In addition to target RNA knockdown1–10, Cas13 proteins 
have been used for viral RNA detection7,9,11,12, site-directed RNA 
editing13, demethylation of m6A-modified transcripts14, RNA live 
imaging15,16 and modulation of splice site choice, as well as cleav-
age and polyadenylation site usage5,17,18. Cas13 proteins are guided 
to their target RNAs by a single CRISPR RNA (crRNA) composed of 
a direct repeat (DR) stem loop and a spacer sequence (gRNA) that 
mediates target recognition by RNA–RNA hybridization. Although 
Cas13 enzymes exert some nonspecific collateral nuclease activ-
ity on activation4–6,11,19, they have greatly reduced off-target activ-
ity in cultured cells compared with RNA interference (RNAi)2,5,13. 
Previous studies have shown that Cas13 gRNAs have minimal pro-
tospacer flanking sequence constraints1,4,13,20 and that RNA target 
sites should be accessible for Cas13 binding1,2,4. Beyond these basic 
parameters, we currently lack information about optimal Cas13 
crRNA designs for effective target RNA knockdown.

To date, three Cas13 effector proteins (PguCas13b, PspCas13b, 
RfxCas13d) have been reported as showing high RNA knockdown 
efficacy with minimal off-target activity5,13. We compared the ability 
of these Cas13 enzymes to knock down green fluorescent protein 
(GFP) mRNA when directed to either the cytosol or the nucleus. 
RfxCas13d (CasRx) consistently showed the strongest target knock-
down, especially when fused to a nuclear localization sequence 
(NLS) (see Supplementary Fig. 1a–c). Using Cas13d-NLS, we varied  

the gRNA length while maintaining a constant gRNA 5′-end or 
3′-end relative to a 30-nucleotide (nt) reference gRNA, and found 
that 23-nt to 30-nt gRNAs confer the most pronounced target 
knockdown (see Supplementary Fig. 1d).

To systematically assess the RfxCas13d target knockdown effi-
cacy of thousands of gRNAs, we established a monoclonal HEK293 
cell line expressing destabilized GFP and doxycycline-inducible 
Cas13d-NLS nuclease. We lentivirally delivered a library of 7,500 
crRNAs that target the GFP coding sequence, containing per-
fect match (PM) and mismatch gRNAs (Fig. 1a). We performed 
FACS to gate cells in four bins based on their GFP intensity (see 
Supplementary Fig. 2a). The gRNA counts showed high concor-
dance between bins across three independent transductions, with 
clear separation of bin 1, which contained cells with the lowest GFP 
expression (see Supplementary Fig. 2b–d).

We calculated the log2(fold change) (log2(FC)) gRNA enrich-
ment between all bins and the unsorted input gRNA distribution 
(see Supplementary Data 1). PM gRNAs were enriched in bin 1,  
whereas increasing numbers of mismatches led to a gradual 
decrease in gRNA enrichment (Fig. 1b and see Supplementary  
Fig. 3a–c). This was true for the whole gRNA population as well as 
for individual PM gRNAs and their corresponding gRNAs with one 
to three mismatches (Fig. 1b,c and see Supplementary Fig. 3d). As a 
control, the library also contained 537 nontargeting crRNAs which 
were effectively depleted from bin 1 (Fig. 1b and see Supplementary 
Fig. 3a–c). As expected, gRNA abundances in bin 1 were negatively 
correlated to those in bins 2–4, which contained cells with higher 
GFP intensities (see Supplementary Fig. 3e,f). Taken together, this 
suggests that the enrichments of gRNAs in bin 1 accurately reflect 
target mRNA knockdown.

We noticed considerable heterogeneity of gRNA enrichment 
within each gRNA class (Fig. 1b,c). For PM gRNAs targeting differ-
ent regions of the target mRNA, we observed position-dependent 
effects, suggesting an influence of the target sequence context on 
gRNA efficacy (Fig. 1d). We selected six gRNAs along the GFP tar-
get transcript, with either high or low enrichment, and validated 
their relative target knockdown efficacies by transfection of indi-
vidual gRNAs, followed by flow cytometry (Fig. 1e).

To examine whether Cas13 can tolerate mismatches between 
the gRNA and the target RNA, we calculated the relative log2(FC) 
(Δlog2(FC)) for each mismatch gRNA by subtracting the log2(FC) 
from the reference (PM) gRNA (Fig. 1f). We found a critical (seed) 
region for Cas13d knockdown efficacy between gRNA nucleotides 
15–21, with its center at nucleotide 18 relative to the gRNA 5′-end. 
Although seed regions have been shown for Cas13a1,21,22, one group 
reported no clear seed region for Cas13d23, whereas another showed 
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position-dependent mismatch sensitivity for Cas13d in a cell-free 
assay24. Within the seed region, single mismatches led to dimin-
ished gRNA enrichment, whereas mismatches outside the seed 
region were tolerated better (Fig. 1f). The critical region was present 
regardless of the mismatch identity (Fig. 1g). Similarly, consecutive 
double (CD) and triple (CT) mismatches indicated the presence of 
the critical region (Fig. 1g and see Supplementary Fig. 4a). For ran-
domly distributed double mismatches, the largest change in enrich-
ment was observed in cases where both mismatches were in the seed 
region (see Supplementary Fig. 4b). Increasing the number of mis-
matches to three mismatches largely abrogated target knockdowns 
(see Supplementary Fig. 4a). For this reason, the critical region may 

have been masked in previous studies on EsCas13d which tested 
four consecutive mismatches23.

Given the heterogeneity in enrichment for gRNAs with mis-
matches in the seed region, we sought to assess the effect of surround-
ing nucleotide context (see Supplementary Fig. 5a). Controlling for 
the reference gRNA efficacy, mismatches in a ‘U’ context at the tar-
get site negatively impacted Cas13d activity, whereas mismatches in 
a GC context were better tolerated (see Supplementary Fig. 5b). We 
confirmed the presence of the seed region in transfection experi-
ments using gRNAs with single or double nucleotide mismatches to 
the GFP mRNA (Fig. 1h). Whereas a PM gRNA decreased the per-
centage of GFP-positive cells to ~29%, a single mismatch at gRNA 
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Fig. 1 | Pooled CRISPR RfxCas13d GFP knockdown tiling screen. a, The GFP-targeting gRNA library (n = 7,500) was lentivirally transduced into TetO-
RfxCas13d and GFPd2PEST HEK293 cells in n = 3 transduction replicates. After selection, cells are sorted by GFP intensities into four bins. psi+, Psi 
packaging signal; RRE, Rev response element; cPPT, central polypurine tract; U6, human U6 promoter; DR, RfxCas13d direct repeat; spacer, gRNA 
sequence; EFS, elongation factor 1α short promoter; Puro, puromycin selection marker; WPRE, post-transcriptional regulatory element. b,c, log2(FC) 
enrichment scores of gRNAs comparing gRNA counts of the lowest fluorescence (bin 1) with the input (unsorted) cell population. Scores are demarcated 
by gRNA type, as given by the list in a. b, All gRNAs. c, A single PM gRNA and corresponding derivative gRNAs with mismatches. The gRNA log2(FC) 
enrichments are calculated relative to the PM reference gRNA (Δlog2(FC)). Black lines denote medians. d, Distribution of PM gRNAs along the GFP 
mRNA and their log2(FC) enrichment (n = 399). The gRNAs are separated into targeting efficacy quartiles Q1–Q4, with Q4 containing guides with the 
best knockdown efficacy. The line indicates LOESS (locally estimated scatterplot smoothing) fit with 95% confidence interval shading. e, Percentage GFP 
knockdown for six guide RNAs (three with high efficacy and three with low efficacy) highlighted in d (lines indicate mean of n = 3 biological replicates). 
Veh, vehicle transfection. f, Relative targeting efficacy (Δlog2(FC)) of gRNAs with SMs at the indicated position relative to their cognate PM gRNAs 
(n = 100; *P < 0.05, **P < 0.01, ***P < 0.001 from a two-tailed, Student’s t-test). g, Top: change in targeting efficacy by gRNA nucleotide identity or 
mismatch type for SM gRNAs. Bottom: change in targeting efficacy for SMs, CDs or CTs by position. h, Validation of RfxCas13d seed region. Left: individual 
PM and mismatch gRNAs relative to GFP target mRNA. Right: percentage of GFP-positive cells after co-transfection of specific GFP-targeting gRNAs 
normalized to the nontargeting control (mean of n = 3 biological replicates). WT, wild type. Boxes in b and f indicate the median and IQRs, with whiskers 
indicating 1.5× the IQR or the most extreme data point outside the 1.5-fold IQR.
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position 18 resulted in 75% GFP-positive cells and a double mismatch  
at positions 17 and 18 resulted in ~79% GFP-positive cells (Fig. 1h).

Next, we sought to assess the features that may affect knockdown 
efficacy for PM gRNAs (see Supplementary Note 1 for details). 
One of the features impacting the observed gRNA enrichments 
in the GFP-tiling screen was crRNA folding: predicted secondary 
structures and corresponding minimum free energy (MFE) of PM 
crRNAs showed a positive correlation between the MFE and gRNA 
efficacy (see Supplementary Fig. 6a). In particular, ‘G’-dependent 
structures, such as predicted G-quadruplexes, showed diminished 
target knockdown. Given that the crRNA folding is critical for effec-
tive target knockdown, we sought to further stabilize and improve 
the DR through repair of a predicted bulge in the DR, by varying 
the length of the stem loop or by disrupting bases in the proximal 
DR stem (see Supplementary Fig. 6b). Analysis of the crystal struc-
ture of EsCas13d and UrCas13d, together with its crRNA, suggested 
that the terminal loop in the DR may not be embedded within the 
protein and thus may allow extension (and further stabilization) of 
the stem loop23,24, similar to that previously found to enhance Cas9 
activity25,26. We observed that any change in stem length abrogated 
target knockdown completely (see Supplementary Fig. 6c). Also, 
repair of the bulged nucleotide within the stem decreased target 
knockdown. However, disruption of the first base-pair within the 

proximal stem further increased Cas13d targeting efficacy, leading 
to a novel RfxCas13d DR with improved knockdown. We tested the 
modified DR on six additional gRNAs targeting GFP and found that 
the modified DR improved target knockdown, especially for gRNAs 
with low knockdown efficacy (see Supplementary Fig. 6d).

We defined 15 crRNA and target RNA features based on their 
correlation with observed gRNA enrichment (see Supplementary 
Table 1 and Supplementary Note 1). With these features, we sought 
to derive a generalizable ‘on-target’ model to predict Cas13d tar-
get knockdown. We compared the ability of machine-learning 
approaches to predict gRNA efficacy (see Methods) and found 
that a random forest (RF) model had the best prediction accuracy 
(see Supplementary Fig. 7a), weighting the crRNA-folding energy, 
the local target C context and the upstream target U context as the 
most important features (see Supplementary Fig. 7b). Other learn-
ing approaches frequently chose similar features, suggesting that 
these features are the main drivers of Cas13d GFP knockdown  
(see Supplementary Fig. 7c). To identify the key predictor of gRNA 
efficacy, we iteratively reduced the number of features, monitor-
ing the model performance and deriving a minimal model that 
explained about 37% of the variance (r2) with Spearman‘s correlation 
(rs) of ~0.58 for the held-out data (Fig. 2a and see Supplementary  
Fig. 7d–f). In comparison, a support vector machine (SVM) regression  
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model with a similar structure to a Cas9 gRNA prediction algo-
rithm27 performed worse when applied to these data (r2 = 0.21, 
rs = 0.44) (Fig. 2a).

To show that our model is generalizable, we designed gRNAs  
to target the endogenous transcripts of CD46 and CD71, which 
encode cell-surface proteins, and measured the gRNA knock-
down efficacy by flow cytometry. For each gene, we chose three  
gRNAs predicted to have high knockdown efficacy (top two  
quartiles) and three gRNAs predicted to have low knockdown  
efficacy (bottom two quartiles). On an individual gRNA level, 
we found that most gRNAs with higher predicted guide scores  
suppressed CD46 and CD71 protein expression more robustly  
than gRNAs with lower guide scores (Fig. 2b). Comparing the 
observed knockdown between all three high-scoring gRNAs and 
all three low-scoring gRNAs, we found a notable improvement 
for CD71, whereas for CD46 we observed considerable variance. 
To increase throughput and test gRNA efficacy predictions for 
more genes, we first generated a small crRNA library targeting 
ten essential and ten control genes with both three high-scoring 
and three low-scoring gRNAs, and monitored their depletion in 

a gene essentiality screen over time. Essential genes were chosen 
from genes that were strongly depleted in previous RNAi screens28 
(see Supplementary Fig. 8a). Most high-scoring gRNAs target-
ing essential genes were progressively depleted over time, whereas 
low-scoring gRNAs showed largely no depletion (Fig. 2c, and see 
Supplementary Fig. 8b).

In addition, we performed a second targeted essentiality screen in 
A375 cells targeting 35 essential and 65 control genes with 20 high-
scoring and 20 low-scoring gRNAs per gene (see Supplementary 
Fig. 8c). Similar to the HEK293 screen above, we found that 
high-scoring gRNAs that target essential genes were progressively 
depleted over time (Fig. 2d). Although high-scoring gRNAs were 
generally more depleted than low-scoring gRNAs on a per-gene 
level, we noticed that not all predicted essential genes showed 
depletion with Cas13d targeting (see Supplementary Fig. 8c,d),  
suggesting that RNAi screen-derived essentiality scores may not be 
directly comparable with Cas13-derived essentiality.

We calculated a gene depletion score based on the gRNA rank 
consistency for the 20 high-scoring gRNAs and found strong 
enrichment of defined essential genes at the top of the list (Fig. 2e). 
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The gRNA depletion scores correlated better with the DEMETER2 
RNAi28 scores used to define the set of essential genes to be tested 
(up to rs = 0.71 using the best gRNA) than with the Cas9 STARS 
scores29 (up to rs = 0.61) (Fig. 2f). Taken together, this suggests that 
the crRNA and target RNA features derived from the GFP-tiling 
screen can generalize to predict Cas13d gRNA efficacy for novel 
targets, and that these gRNA predictions can be used in pooled 
CRISPR–Cas13 screens.

Our predictive on-target model based on the GFP-tiling screen 
could largely separate gRNAs with low knockdown efficacy from 
those with high efficacy. However, given that we observed remaining 
heterogeneity among the predicted high-scoring gRNAs, we sought 
to improve our on-target model by expanding our training data-
set. Therefore, we performed three additional tiling screens target-
ing the main transcript isoforms of the cell-surface proteins CD46, 
CD55 and CD71 in HEK293 cells, coupled with FACS to select 
cells with decreased surface protein expression (Fig. 3a–c and see 
Supplementary Fig. 9a–c). In addition to PM gRNAs, we added sev-
eral additional gRNA classes, including gRNAs to target noncoding 
elements (see Supplementary Fig. 9a). For each screen, PM gRNAs 
showed the strongest gRNA enrichment relative to the unsorted 
input samples, whereas two different negative controls, reverse 
complement gRNAs and nontargeting gRNAs, were depleted (see 
Supplementary Fig. 9d). In the new screens we reduced the overall 
gRNA length to 23 bases and included a set of gRNA length vari-
ants ranging in length from 15 nt to 36 nt. Starting from 23-nt length, 
gRNAs exerted full knockdown efficacy, whereas longer gRNA 3′ 
ends did not have any deleterious effects (see Supplementary Fig. 9e).

PM gRNAs targeting coding sequence (CDS) were more  
enriched compared with gRNAs targeting untranslated regions 
(UTRs) or introns (see Supplementary Fig. 9f). UTR-targeting 
gRNAs may show lower enrichments because each target gene  
may be represented by multiple transcript isoforms with alterna-
tive UTR usage. Hence, gRNAs targeting coding regions have a  
higher likelihood of finding the cognate target site whereas, for 
example, 3′-UTR-targeting gRNAs find their target site only in a 
fraction of the expressed transcript isoforms. Accordingly, the low 
enrichment for intron-targeting gRNAs may be explained by the 
short-lived nature of introns. For these gRNAs, the intronic target 
site is present only for a short period of time, which may enable 
the transcript to evade Cas13 targeting. For this reason, gRNA 
knockdown efficacy may not be directly comparable between CDS-
targeting gRNAs and UTR- or intron-targeting gRNAs. Across all 
39 introns present, we found that intron-targeting gRNAs were only 
mildly enriched. In these introns, we observed a slight decrease in 
gRNA efficacy immediately downstream of the 5′-splice site and 
within −50 to 0 nt upstream of the 3′-splice site (see Supplementary 
Fig. 9g). These sites are typically bound by the spliceosome30, sug-
gesting that gRNAs targeting these regions may compete with the 
splicing machinery and other splice factors for target sequences. 
As transcript maturation in the nucleus seemingly influences the 
gRNA-targeting efficacy, we wondered if the exon–junction com-
plex would affect knockdown of the mature transcript in the same 
way. The exon–junction complex typically binds ~20–24 nt 5′ of 
the exon–exon junction during splicing31,32. Indeed, we observed a 
depletion of high-scoring gRNAs within a window of −20 to 0 nt 5′ 
to the exon junction (see Supplementary Fig. 9h).

To improve our on-target model, we focused on PM gRNAs  
that target CDSs and increased the number of high-confidence 
model input observations from ~400 to nearly 3,000. Similar to 
the initial GFP screen, gRNA efficacies were distributed along the  
coding region in a nonrandom manner (Fig. 3a–c). We repeated 
the assessment of features that may affect knockdown efficacy  
(see Supplementary Note 2 for details). Notably, the increased num-
ber of observations uncovered positional nucleotide preferences 
(see Supplementary Fig. 10a,b). The gRNA enrichments correlated  

positively with G- and C-base probabilities in the seed region 
around gRNA position 18. Surrounding this region, U- and 
A-base probabilities correlated positively with the target knock-
down. We derived an updated on-target model using 2,918 CDS-
targeting gRNAs across all four tiling screens, and selected 35 of  
644 evaluated features in a similar fashion to previously (see 
Methods, and also Supplementary Table 2, Supplementary Note 2 
and Supplementary Data 2).

The RFcombined model displayed improved prediction accuracy 
compared with the initial RFminimal model (from here on referred 
to as RFGFP), explaining ~47% of the variance (r2) with Spearman’s 
correlation (rs) of ~0.67 for the held-out data (Fig. 3d and see 
Supplementary Fig. 10c). Using tenfold cross-validation, the model 
effectively separated low-scoring gRNAs from high-scoring gRNAs, 
assigning 63% of the gRNAs correctly to the highest efficacy quartile 
(Fig. 3e). Similarly, the predicted guide scores of the top- or bottom-
ranked gRNAs (ranked by the observed knockdown efficacy) sepa-
rate gRNAs that performed well from those that performed poorly 
better than expected by chance (see Supplementary Fig. 10d). 
Furthermore, we performed leave-one-out cross-validation train-
ing on three datasets while predicting guide scores for the held-out 
fourth screen. The RFcombined model generalized well for endogenous 
genes (mean ± s.d., rs = 0.63 ± 0.01) but was less predictive for the 
GFP transgene (rs = 0.33) (see Supplementary Fig. 10e).

Finally, we compared the ability of both models, RFGFP and 
RFcombined, to correctly predict the knockdown efficacies for the two 
essentiality screens. Both screens were designed based on gRNA 
predictions made by the RFGFP model. In both cases, the RFcombined 
model was in better agreement with the observed knockdown effi-
cacies across all genes (Fig. 3f). Likewise, we found that the RFcombined 
model showed improved agreement with the observed gRNA deple-
tion on a per-gene basis for the ten most depleted genes in the A375 
fitness screen (RFGFP: rs = 0.46 ± 0.16; RFcombined: rs = 0.58 ± 0.14). 
Taken together, we show that our updated on-target model, 
RFcombined, can predict Cas13d gRNA target knockdown efficacies, 
separating poorly performing gRNAs from gRNAs with high effi-
cacy, and generalizing across numerous targets.

We applied our model and predicted gRNAs for all protein-cod-
ing transcripts in the human genome (GENCODE v19). We made 
these predictions available through a user-friendly, web-based appli-
cation (https://cas13design.nygenome.org). In addition, we report 
the ten highest-scoring crRNAs for the 5′-UTR, CDS and 3′-UTR 
of each transcript (see Supplementary Fig. 11a and Supplementary 
Data 3). We partitioned the predicted gRNAs according to the effi-
cacy quartiles in our four screens. Only 15.2% of all possible gRNAs 
fall into the highest-scoring (best knockdown) quartile (Q4) (see 
Supplementary Fig. 11b). A large fraction of gRNAs is predicted to 
have lower efficacy (36.8% of all gRNAs are in Q1 or Q2), which 
emphasizes the value of optimal gRNA selection for high knock-
down efficacy. However, almost all transcripts contain top-scoring 
gRNAs (see Supplementary Fig. 11c).

Taken together, we performed a set of pooled screens for CRISPR–
Cas13d and defined targeting rules for optimal gRNA design. We 
show that crRNA features and target RNA context constrain target 
knockdown efficacy and, using these data, we developed a model 
to predict gRNAs with high efficacy. We validated this model using 
pooled Cas13d screens and compared the ability of Cas13 perturba-
tions to identify a set of essential genes with prior RNAi and Cas9 
screens. Although all three perturbation methods broadly agree, it 
is important to note that a comprehensive genome-wide compari-
son is pending. An important distinction between RNA-targeting 
approaches is that, whereas RNAi is restricted to the cytosol, Cas13 
allows for compartmentalized targeting (nucleus, cytosol and other 
subcellular compartments) and sophisticated transcriptome engi-
neering with catalytically dead (dCas13) effector fusions. Overall, 
our study provides a detailed characterization of Cas13 targeting 
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and a predictive model for high-activity gRNAs, yielding a valuable 
platform for the design of massively parallel RNA-targeting screens.
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Methods
Cloning of Cas13 nuclease, gRNAs and destabilized EGFP plasmids. 
Using Gibson cloning, we modified the EF1a-short (EFS) promoter-driven 
lentiCRISPRv2 (Addgene, catalog no. 52961) and lentiCas9-Blast (Addgene, 
catalog no. 52962) plasmids with several different transgenes33. For the 
destabilized enhanced GFP (EGFP) construct, we introduced a PEST sequence 
and nuclear localization tag on EGFP to create EFS–EGFPd2PEST-2A-Hygro 
(pLentiEGFPdestabilized) from lentiCas9-Blast. To test the upstream U content, we 
introduced a multiple cloning site (MCS) into pLentiEGFPdestabilized right after 
the stop codon, and used the MCS to introduce oligonucleotide sequences with 
variable U-content.

For the Cas13 orthologs, we cloned effector proteins (PguCas13b: Addgene, 
catalog no. 103861; PspCas13b: Addgene, catalog no. 103862; RfxCas13d: Addgene, 
catalog no. 109049) and their DR sequences (PguCas13b: Addgene, catalog no. 
103853; PspCas13b: Addgene, catalog no. 103854; RfxCas13d: Addgene, catalog 
no. 109053) into lentiCRISPRv2. In this manner, we created pLentiRNACRISPR 
constructs: hU6-(Cas13 DR)-EFS-(Cas13 ortholog)-(NLS/NES)−2A-Puro-WPRE, 
where (Cas13 ortholog) was one of PguCas13b, PspCas13b or RfxCas13d and 
(NLS/NES) was either a nuclear localization signal or a nuclear export signal. To 
generate doxycycline-inducible Cas13d cell lines, we cloned NLS-RfxCas13d-NLS 
(Addgene, catalog no. 109049) into TetO-(Cas13)-WPRE-EFS-rtTA3-2A-Blast. 
For the screens, we changed the DR in the lentiGuide-Puro vector (Addgene, 
catalog no. 52963) to contain the RfxCas13d DR using Gibson cloning to create 
lentiRfxGuide-Puro (pLentiRNAGuide)33.

Guide cloning was done as described previously33. All constructs were 
confirmed by Sanger sequencing. All primers used for molecular cloning and guide 
sequences are shown in Supplementary Data 4. The main plasmids used in this 
work and described above have been made available by Addgene (https://www.
addgene.org/Neville_Sanjana/).

Cell culture and monoclonal cell line generation. HEK293FT cells were acquired 
from Thermo Fisher Scientific (catalog no. R70007) and A375 cells were acquired 
from American Type Culture Collection (catalog no. CRL-1619). HEK293FT and 
A375 cells were maintained at 37 °C with 5% CO2 in D10 medium: Dulbecco’s 
modified Eagle’s medium with high glucose and stabilized l-glutamine (Caisson, 
catalog no. DML23) supplemented with 10% fetal bovine serum (Serum Plus II, 
Sigma-Aldrich, catalog no. 14009C) and no antibiotics.

To generate doxycycline-inducible RfxCas13d-NLS HEK293FT and A375 cells, 
we transduced cells with an RfxCas13d-expressing lentivirus at a low multiplicity of 
infection (MOI < 0.1) and selected with 5 µg ml−1 of blasticidin S (Thermo Fisher, 
catalog no. A1113903). Single-cell colonies were picked after sparse plating. Clones 
were screened for Cas13d expression using western blotting and mouse anti-FLAG 
M2 antibody (Sigma, catalog no. F1804).

For the GFP-tiling screen, RfxCas13d-expressing cells were transduced 
with pLentiEGFPdestabilized lentivirus at a low MOI (<0.1) and selected with 
100 µg ml−1 of hygromycin B (Thermo Fisher, catalog no. 10687010) for 2 d. Single-
cell colonies were grown by sparse plating. Resistant and GFP-positive clonal cells 
were expanded and screened for homogeneous GFP expression by flow cytometry.

Transfection and flow cytometry. For all transfection experiments, we seeded 
2 × 105 HEK293FT cells per well of a 24-well plate before transfection (12–18 h) 
and used 500 or 750 ng plasmid together with a 5:1 ratio of Lipofectamine 2000 
(Thermo Fisher, catalog no. 11668019) or 1 mg ml−1 of polyethylenimine (PEI, 
Polysciences, catalog no. 23966) to DNA (for example, 2.5 µl of Lipofectamine 
2000 or PEI mixed with 0.5 µg of plasmid DNA). Flow cytometry or FACS was 
performed at 48 h post-transfection. All transfection experiments were performed 
in biological triplicates.

For the Cas13 ortholog comparison (see Supplementary Fig. 1a–c), we cloned 
the effector proteins (PguCas13b: Addgene, catalog no. 103861; PspCas13b: 
Addgene, catalog no. 103862; RfxCas13d: Addgene, catalog no. 109049) and their 
direct repeat sequences (PguCas13b: Addgene, catalog no. 103853; PspCas13b: 
Addgene, catalog no. 103854; RfxCas13d: Addgene, catalog no. 109053) as 
described above. We co-transfected the pLentiRNACRISPR constructs together 
with a GFP expression plasmid (pLentiEGFPdestabilized) in a 2:1 molar ratio. 
The gRNA length comparison (see Supplementary Fig. 1d) was performed using 
previously published RfxCas13d constructs (Addgene, catalog nos. 109049 and 
109053), except that we removed the GFP cassette from the RfxCas13d plasmid. 
The modified RfxCas13d construct and guide plasmids were co-transfected 
together with pLentiEGFPdestabilized in a 2:2:1 molar ratio. For the DR 
modification experiment (see Supplementary Fig. 6c) we transfected RfxCas13d-
expressing cells, starting doxycycline induction (1 µg ml−1) at the time of cell 
plating. The guide plasmid and GFP expression plasmid were co-transfected at a 
1:1 molar ratio.

For the model validation flow cytometry (see Fig. 2b) and CD46 screen 
validation (see Supplementary Fig. 9c), we transfected RfxCas13d-expressing cells 
with a gRNA-expressing plasmid. Then, 48 h post-transfection, the cells were 
stained for the respective cell-surface protein for 30 min at 4 °C and measured by 
FACS (BioLegend: CD46 no. 352405 clone TRA-2–10, CD71 (TFRC) no. 334105 
clone CYIG4).

For the GFP screen validation (see Fig. 1e) and seed validation experiments 
(see Fig. 1h), we co-transfected RfxCas13d-expressing cells with a gRNA-
expressing plasmid and pLentiEGFPdestabilized at a 1:1 molar ratio. At 48 h post-
transfection, the cells were analyzed by flow cytometry.

To assess the upstream U context (see Supplementary Note 1), we transfected 
upstream-U-context-modified pLentiEGFPdestabilized-MCS plasmid together 
with a crRNA plasmid into RfxCas13d-expressing cells in a 2:1 molar ratio. Each 
GFP-upstream, U-context plasmid was co-transfected with both a targeting and a 
nontargeting gRNA used to calculate the knockdown, because a change in 3′-UTR 
uridine content could attract RNA-binding proteins that may affect RNA stability 
independent of Cas13. We selected the zero-uridine oligonucleotide from a set 
of 10,000 in silico randomized 52mers with (A24,C14,G14) with minimal predicted 
RNA secondary structure, as determined by RNAfold34 with default setting.

For flow cytometry analysis, cells were gated by forward and side scatter and 
signal intensity to remove potential multiplets. If present, cells were additionally 
gated with a live–dead staining (LIVE/DEAD Fixable Violet Dead Cell Stain Kit, 
Thermo Fisher, catalog no. L34963). For each sample we analyzed at least 5,000 
cells. If cell numbers varied, we randomly downsampled all conditions to the 
same number of cells before calculating the mean fluorescence intensity. For GFP 
co-transfection experiments, we considered only the percentage of transfected 
cells with the highest GFP expression, determined by comparing the nontargeting 
control with wild-type control cells. For the upstream, U-context, co-transfection 
experiments, we considered whole-cell populations.

For knockdown experiments of endogenous genes (see Fig. 2b and 
Supplementary Fig. 9c), we determined the percentage of transfected cells with a 
lower target gene signal than the nontargeting control, in the condition with the 
highest observed knockdown. For all conditions, we analyzed the same bottom 
percentage of cells. For the selected cells, we compared the mean fluorescence 
intensity of targeting guides relative to nontargeting guides to determine the 
percentage knockdown. To directly compare relative rank of individual guides, 
as done in Fig. 2b, we normalized the effect size by setting the most effective 
guide to 100%. For the seed validation (Fig. 1f), we determined the percentage 
of transfected (GFP-positive) cells with GFP signal higher than Lipofectamine 
vehicle-treated control cells. The percentage of transfected cells was normalized to 
the percentage GFP-positive cells in the nontargeting guide control.

Screen library design and pooled oligo cloning. To design the RfxCas13d gRNA 
library for GFP, we used the entire EGFP coding sequence (without the start 
codon). In silico, we generated all PM 27mer gRNAs with minimal constraints 
(T-homopolymer < 4, V-homopolymer < 5, 0.1 < GC content < 0.9) and selected 
400 by random sampling. From these, we sampled 100 gRNAs and introduced one 
random nucleotide conversion at each position (single-nucleotide mismatch (SM) 
set n = 2,700). From these 100, we randomly sampled 17 gRNAs and introduced  
26 or 25 consecutive double (CD set n = 442) and consecutive triple (CT set 
n = 425) mismatches, respectively. We sampled an additional 13 gRNAs from the 
SM set (in total, 30 gRNAs) and introduced 100 random double mismatches  
at any position for each gRNA, if not present already in the set of 17 CD  
mismatches (RD set n = 3,000). In total, we designed 6,967 GFP-targeting guides 
and added 533 nontargeting guides (NT set) of the same length from randomly 
generated sequences that did not align to the human genome (hg19) with fewer  
than 3 mismatches.

For CD46, CD55 and CD71 library design, we selected the transcript isoform 
with highest isoform expression in HEK-TE samples (determined by Cancer 
Cell Line Encyclopedia; GENCODE v.19) and longest 3′-UTR isoform (CD46: 
ENST00000367042.1; CD55: ENST00000367064.3; CD71: ENST00000360110.4). 
As described above, we generated all PM 23mers, and selected ~2,000 evenly 
spaced gRNAs per target. In addition to PM, SM, RD and NT sets, as described 
earlier, we included for each target a set of guide-length variant (LV set n = 450) 
gRNAs targeting intronic sequences near splice-donor and splice-acceptor sites 
across all 39 annotated introns (I set n = 2,122) and an additional negative control 
set of reverse-complementary PM sequences (RC set n = 300). Further details are 
given in Supplementary Data 5.

For both targeted essentiality screens, we used the DEMETER2 v.5 (ref. 28)  
dataset from the Cancer Dependency Map portal (DepMap) to determine 
essential and control genes. Specifically, we selected essential genes with low 
log2(FC) enrichments across all cell lines and in the respective assay cell line 
(see Supplementary Fig. 8a,c). For our HEK293FT cells, we considered data 
for HEK-TE cells. Furthermore, we selected genes with one transcript isoform 
constituting more than 75% of the gene expression with an expression level of 
fewer than ~150 transcripts per million. We predicted gRNA efficiencies using 
the minimal RFGFP model and removed all guides with matches or partial matches 
elsewhere in the transcriptome. We allowed up to three mismatches when looking 
for potential off-targets. From the set of remaining PM gRNA predictions, 
we manually selected three high-scoring and three low-scoring guides for the 
HEK293FT cell line screen, to ensure that each guide fell into nonoverlapping 
regions of the target transcripts. For the A375 cell line targets, we selected the top 
20 high-scoring gRNAs. For the set of 20 low-scoring guides, we chose among 
the bottom 60 to reduce the overlap of gRNAs that fall into the same region. In 
this way, we assayed twenty genes in HEK293FT cells targeting ten essential and 
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ten control genes with three low-scoring and three high-scoring guides, as well as 
three nontargeting guides (n = 123). For the A375 screen, we targeted 100 genes 
(35 essential and 65 control genes) with 40 guides each (20 high scoring and 20 low 
scoring) and included 680 nontargeting sequences (n = 4,680).

All large-scale, pooled crRNA libraries were synthesized as single-stranded 
oligonucleotides (Twist Biosciences), PCR amplified using NEBNext High-Fidelity 
2X PCR Master Mix (M0541S) and Gibson cloned into pLentiRfxGuide-Puro. 
The guides for the HEK293FT essentiality screen were synthesized as standard 
oligonucleotides (IDT), array cloned, confirmed by Sanger sequencing and 
subsequently pooled using equal amounts. Complete library representation with 
minimal bias (90th percentile:10th percentile crRNA read ratio: 1.68–2.17) was 
verified by Illumina sequencing (MiSeq).

Pooled lentiviral production and screening. Lentivirus was produced via 
transfection of library plasmid with appropriate packaging plasmids (psPAX2: 
Addgene, catalog no. 12260; pMD2.G: Addgene, catalog no. 12259) using PEI 
reagent in HEK293FT. At 3 d post-transfection, viral supernatant was collected and 
passed through a 0.45-μm filter and stored at −80 °C until use.

Doxycycline-inducible RfxCas13d-NLS human HEK293FT, double-transgenic 
HEK293FT-GFP or A375 cells were transduced with the respective library-
pooled lentiviruses in separate infection replicates ensuring at least 1,000× guide 
representation in the selected cell pool per infection replicate using a standard 
spinfection protocol. We generated either two or three independent replicate 
experiments. After 24 h, RfxCas13d expression was induced by addition of 1 µg ml−1 
of doxycycline (Sigma, catalog no. D9891) and cells were selected with 1 µg ml−1 of 
puromycin (Thermo Fisher, catalog no. A1113803), resulting in ~30% cell survival. 
Puromycin selection was complete by 48 h post-puromycin addition. Assuming 
independent infection events, we determined that ~83% of surviving cells received 
a single guide RNA construct. Cells were passaged every 2 d, maintaining at least 
the initial cell representation and supplementing with fresh doxycycline.

The tiling screens were terminated after 5–10 d. For all targets we noted 
maximal knockdown after 2–4 d (data not shown). For cell-surface proteins, 
cells were stained in batches of 1 × 107 cells for 30 min at 4 °C (BioLegend: CD46 
clone TRA-2–10 no. 352405, 3 µl per 1 × 106 cells; CD55 clone JS11 no. 311311, 
1.5 µg per 1 × 106 cells; CD71 clone CYIG4 no. 334105, 4 µl per 1 × 106 cells). We 
collected unsorted samples for input gRNA representation of approximately 1,000× 
coverage for each sample and sorted at least another 1,000× representations into 
the assigned bins based on their signal intensities (GFP: lowest 20%, 20%, 20% 
and remaining highest 40%, see Supplementary Fig. 2a; CD proteins lowest 20% 
and highest 20%, see Supplementary Fig. 9b and Supplementary Data 5). Cells 
were washed in phosphate-buffered saline and frozen at −80 °C until sequencing 
library preparation. In each case, the bin containing the lowest 20% represented the 
strongest target knockdown.

The essentiality screens were started (day 0) on complete puromycin selection, 
which was at 5 d after transduction. Cells were passaged every 2–3 d, maintaining 
at least the initial cell representation and supplementing with fresh doxycycline. 
At day 0 (input) and every 7 d, we collected a >1,000× representation from each 
sample. The HEK293FT cell screen was conducted in triplicate and cultured for 
4 weeks. The A375 cell screen was conducted in duplicate and cultured for 2 weeks.

Screen readout and read analysis. For each sample, genomic DNA was isolated 
from sorted cell pellets using the GeneJET Genomic DNA Purification Kit 
(Thermo Fisher, catalog no. K0722) using 2 × 106 cells or fewer per column. The 
crRNA readout was performed using two rounds of PCR35. For the first PCR step, 
a region containing the crRNA cassette in the lentiviral genomic integrant was 
amplified from extracted genomic DNA using the PCR1 primers in Supplementary 
Data 4.

For each sample, we performed PCR1 reactions as follows: 20 µl volume with 
2 µg of gDNA in each reaction, limited by the amount of extracted gDNA (total 
gDNA ranged from 8 µg to 50 µg per sample with an estimated representation of 
106 diploid cells per ~6.6 µg of gDNA. PCR1: 4 µl−1 of 5× Q5 buffer, 0.02 U µl−1 of 
Q5 enzyme (M0491L), 0.5 µM forward and reverse primers, and 100 ng gDNA µl−1. 
PCR conditions: 98 °C for 30 s, 24× (98 °C for 10 s, 55 °C for 30 s, 72 °C for 45 s), 
72 °C for 5 min).

We pooled the unpurified PCR1 products and used the mixture for a single 
second PCR reaction per sample. This second PCR adds on Illumina sequencing 
adapters, barcodes and stagger sequences to prevent monotemplate sequencing 
issues. Complete sequences of the five forward and three reverse Illumina PCR2 
readout primers used are shown in Supplementary Data 4 (PCR2: 50 µl of 2× Q5 
master mix (NEB no. M0492S), 10 µl of PCR1 product and 0.5 µM forward and 
reverse PCR2 primers in 100 µl. PCR conditions: 98 °C for 30 s, 17× (98 °C for 10 s, 
63 °Cor 30 s, 72 °C for 45 s), 72 °C for 5 min).

Amplicons from the second PCR were pooled by screen experiment (for 
example, all GFP screen samples) in equimolar ratios (by gel-based band 
densitometry quantification) and then purified using a QiaQuick PCR Purification 
kit (Qiagen, catalog no. 28104). Purified products were loaded on to a 2% E-gel 
and gel extracted using a QiaQuick Gel Extraction kit (Qiagen, catalog no. 28704). 
The molarity of the gel-extracted PCR product was quantified using KAPA library 
quant (KK4824) and sequenced on an Illumina NextSeq 500—II MidOutput  
1×150 v.2.5.

Reads were de-multiplexed based on Illumina i7 barcodes present in PCR2 
reverse primers using bcl2fastq, and by their custom in-read i5 barcode using 
a custom python script. Reads were trimmed to the expected gRNA length by 
searching for known anchor sequences relative to the guide sequence. For the tiling 
screens, preprocessed reads were either aligned to the designed crRNA reference 
using bowtie36 (v.1.1.2) with parameters -v 0 -m 1 or collapsed (FASTX-Toolkit) to 
count perfect duplicates, followed by string-match intersection with the reference 
to retain only PM and unique alignments. Preprocessed gRNA sequences from 
the essentiality screens were aligned allowing for up to one mismatch (-v 1 -m 1). 
Alignment statistics are available in Supplementary Data 6. The raw gRNA counts 
(see Supplementary Data 7) were normalized, separated by screen dataset using a 
median-of-ratios method as in DESeq2 (ref. 37) and underwent batch correction 
using combat implemented in the SVA R package38. Nonreproducible technical 
outliers were removed by applying pair-wise linear regression for each sample, 
after normalization and batch correction, collecting the residuals and taking the 
median value for each gRNA across all sample-centric comparisons. We removed 
all crRNA counts within the top X% of residuals across all samples (GFP: 2%; CD 
proteins: 0.5%; essentiality screen: no outlier removal). For the GFP screen, we 
remove only outliers on a per-sample basis as needed (but not the entire gRNA). 
For CD46, CD55 and CD71 screens, as the number of outliers was small, we 
decided to remove the entire gRNA from the analysis. Supplementary Table 3 
indicates all filtering steps applied.

Processed crRNA counts are available in Supplementary Data 8. The gRNA 
enrichments were calculated by taking the log2 of the count ratios between a bin 
or time point and the corresponding input sample. Consistency between replicates 
was estimated using robust rank aggregation (RRA)39. Δlog2(FC) for mismatching 
guides was calculated by subtracting the log2(FC) of the PM reference guide. For 
the tiling screens, all plots and analyses were performed using the mean gRNA 
enrichments of bin 1 (=bottom 20%) across replicates, unless indicated otherwise. 
Similarly, we used the mean gRNA enrichments relative to day 0 across replicates 
for the essentiality screen. The gRNA enrichment scores (log2(FC)) are available 
in Supplementary Data 1. In all combined analyses across all four tiling screens, 
we scaled the observed log2(FC) separately to improve comparability. For the 
generation of the combined on-target model, we normalized n = 2,918 selected 
CDS-targeting gRNAs across the four tiling screens to the same scale before 
training and testing the model. To do so, for each dataset D, we computed the 
upper and lower quartiles of the guide log2(FC) (UQD and LQD, respectively), as 
well as the corresponding quartiles for the log2(FC) among all the datasets pooled 
together (UQP and LQP). We then updated each fold change, x, as follows:  
𝑥ˆ = ((𝑥 − LQD) / (UQD − LQD) × (UQP − LQP) + LQP). By centering on quartiles, 
this procedure normalized the fold-change distributions in a way that was less 
susceptible to the influence of outliers of a single screen.

Predicting RNA secondary structures and RNA–RNA hybridization energies. 
The crRNA secondary structure and MFEs were derived using RNAfold [–-gquad] 
on the full-length crRNA (DR + guide) sequence34. For building the combined 
on-target model and for testing the RFGFP model on the combined dataset, we 
assumed 23mer gRNAs for all guides in the GFP-tiling screen to prevent length-
dependent differences in the crRNA MFE. Target RNA unpaired probability 
(accessibility) was calculated using RNAplfold [-L 40 -W 80 -u 50] as described 
previously40. We performed a grid-search calculating the RNA accessibility for 
each target nucleotide in a window of −20 bases downstream of the target site 
to +20 bases upstream of the target site, assessing the unpaired probability of 
each nucleotide over 1–50 bases for all PM guides. Then, we calculated Pearson’s 
correlation coefficient between the log10(transformed unpaired probabilities) and 
the observed gRNA log2(FC) for each point and window relative to the gRNA. 
RNA–RNA hybridization between the gRNA and its target site was calculated using 
RNAhybrid [-s -c]41. We calculated the RNA-hybridization MFE for each gRNA 
nucleotide position p over the distance d to the position p + d with its cognate 
target sequence. All measures were either directly correlated with the observed 
gRNA log2(FC) or used partial correlation to account for the crRNA-folding MFE. 
In each case, we computed Pearson’s correlation.

Assessing gRNA nucleotide composition. The gRNA composition was derived by 
calculating the nucleotide probability within the respective gRNA sequence length. 
To assess the presence of sequence constraints similar to a previously described 
anti-tag20 or 5′- and 3′-protospacer flanking sequences, we ranked all PM gRNAs 
by their log2(FC) enrichment within each screen separately. We selected the 
top and bottom 20% enriched/depleted gRNAs, and calculated the positional 
nucleotide probability for the 4 nt upstream and downstream relative to the gRNA 
match. To assess nucleotide preferences at any gRNA match position, in addition 
to upstream and downstream nucleotides, we selected the top 20% of the log2(FC)-
ranked PM guides as described above and calculated nucleotide preferences as 
described previously27. In brief, we calculated the probability of each nucleotide at 
each position for the top gRNAs and all gRNAs. The effect size is the difference of 
nucleotide probability by subtracting the values from all guides from the top guides 
(Δ nt probability). P values were calculated from the binomial distribution with a 
baseline probability estimated from the full-length mRNA target sequence for all 
PM gRNAs. P values were adjusted using Bonferroni’s multiple hypothesis- 
testing correction.
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Assessing target RNA context. To assess the target RNA context, we calculated the 
nucleotide probability at each position (p) over a window (w) of 1–50 nt centered 
around the position of interest (for example, p = −18 with w = 11 summarizes 
the nucleotide probability in a window from −23 to −13, with +1 being the first 
base of the gRNA). We evaluated p for all positions within 75 nt upstream and 
downstream of the gRNA. The nucleotide probability of each point was then 
correlated with the observed log2(FC) gRNA enrichments for all PM gRNAs, either 
directly or using partial correlation accounting for crRNA-folding MFE. In each 
case we used Pearson’s correlation.

The RNA context around single-nucleotide mismatches was assessed 
accordingly with a slight modification. Here the nucleotide context was assessed 
relative to the mismatch position summarizing the nucleotide probability in a 
window of 1–15 nt to either side (for example, p = 8 with w = 5 summarizes the 
nucleotide content in a window of 11 nt from 23 to 13). For more details on p and 
w, please see Supplementary Fig. 5b. We used all 2,700 single-nucleotide mismatch 
guides in the GFP-tiling screen (100 gRNAs × 27 mismatched positions per guide). 
The nucleotide context of each position and each window size was then correlated 
with the observed Δlog2(FC) relative to the PM reference gRNA, either directly or 
using partial correlation to account for crRNA-folding MFE. In each case, we used 
Pearson’s correlation.

On-target model selection. An explanation for all selected features for the RFGFP 
and RFcombined models can be found in Supplementary Tables 1 and 2, respectively. 
The RFcombined model feature input values can be found in Supplementary Data 
2. All continuous feature scores were scaled to the [0, 1] interval limited to the 
5th and 95th percentiles, with a mean set to the 5th percentile. Scaled values 
exceeding the [0, 1] interval were set to 0 or 1, respectively. Scaling parameters 
used to normalize data to the [0, 1] interval for the RF models can be found in 
Supplementary Table 4.

To evaluate and compare model performances, we randomly sampled 1,000 
bootstrap datasets from the data of PM gRNA log2(FC) response values and 
selected features. We used 399 data points for the initial RFGFP model and 2,918 
data points for all CDS-annotating PM guides across the four tiling screens. For 
the RFcombined model, we normalized the observed log2(FC) values data before 
training and testing as described earlier (see ‘Screen readout and read analysis’ 
above). Normalized response values showed better generalizability compared with 
unnormalized or scaled log2(FC). For each bootstrap sample, 70% of the data was 
used for training and the remaining 30% was held out for testing, ensuring a 70:30 
split for each screen dataset when testing the RFcombined model. Linear dependencies 
between features were identified using the function findLinearCombos from the R 
package caret and removed. The model performance was evaluated by calculating 
Spearman’s correlation coefficient rs and Pearson’s r2 for the held-out data. We 
compared a variety of different methods40 (Supplementary Table 5).

For both models, we tested a variety of feature combinations including crRNA-
folding energies, RNA–RNA hybridization energies, target site accessibility, 
overall and positional (di)nucleotide probabilities, and one-hot encoding for 
single nucleotides and dinucleotides of the guide target sites, and their upstream 
and downstream flanking 4 nt. Together, these represented 644 features for the 
combined on-target model. A full set of features for the combined on-target model 
can be found in Supplementary Data 2. For the initial on-target model based on 
the GFP screen data, we evaluated a set of 15 defined features (see Supplementary 
Table 1), alongside one-hot-encoded positional nucleotide information and 
GC content. These 15 features were defined based on their positive or negative 
correlation to the observed response value during the data exploration (see also 
Supplementary Note 1). We iteratively reduced the numbers of features from 15 
to 6 for the RFGFP model and monitored the model performance as described in 
the paragraph above. At each iteration, the RF model performed slightly better 
than any other learning approach. Reducing the features to fewer than the selected 
six features (RFminimal = RFGFP) reduced the model performance. For the combined 
on-target model, we did not iteratively reduce the set of 35 selected features. We 
compared the RFGFP model with an SVM+L1 model similar to one of the first 
CRISPR–Cas9 on-target models. Specifically, we used one-hot encoding for all 35 
(31) nt positions considered (27 gRNA positions in the case of the GFP screen, 23 
for the combined model, and 8 additional positions with 4 nt upstream and 4 nt 
downstream). Considering all positions, the feature space contained 140 single-
nucleotide features, 544 dinucleotide features and the GC content (685 non-all-
zero features). Here we used tuning (see Supplementary Table 5 for parameters) 
to increase model performance for SVM+L1 specifically. For both RF models, 
one-hot-encoded features did not lead to high Spearman’s correlation coefficient rs 
for the held-out data.

For further evaluation of the RF models we used tenfold cross-validation by 
randomly partitioning the data into ten equally sized partitions, ensuring even 
contributions from each screen to each partition. We trained the model ten times 
on 90% of the data and predicted the held-out 10%. For each data point, we 
assigned the known gRNA efficacy quartile based on the log2(FC) enrichment and 
compared it with the predicted efficacy quartiles in the held-out data. For the RFGFP 
model, we found that the model could readily separate poorly performing from 
effective gRNAs. Accordingly, 46% of the guides present in the highest efficacy 
quartile are predicted to reside in the best performing quartile. Conversely, 64% of 

guides present in the lowest efficacy quartile are predicted to reside in the poorest 
performing quartile (see Supplementary Fig. 7e). We also assessed the predicted 
guide score by calculating the median predicted guide score for the top- and 
bottom-ranked gRNAs in the 10% held-out data, based on the known log2(FC) 
rank for all ten cross-validation folds (top/bottom n = 2, 4, 8, 16, 32, 64, 128 or 256 
gRNAs). To compute the null distribution, we calculated the median predicted 
guides scores of randomly selected gRNAs across 1,000 samplings for each n. For 
the leave-one-out cross-validation we trained on all data from three tiling screens 
and performed Spearman’s rank correlation for the predicted guide efficiency of 
the held-out fourth screen to the observed log2(FC) enrichments.

To make the guide score easier to interpret, we standardized the guide score to 
a [0, 1] interval preserving the distribution between the 5th and 95th percentiles. 
Normalized values exceeding the [0, 1] interval were set to 0 or 1, respectively. The 
final RFGFP model was trained on all data points for PM guides using the 6 selected 
features with 1,500 regression trees. The model explains 36.9% of the observed 
variance, with a mean of squared residuals of 0.139. Supplementary Table 6 shows 
the feature contribution for the RFGFP model.

Similarly, final RFcombined was trained on 2,918 data points using 35 selected 
features. Tuning the number of trees (ntree) and number of splitting variables per 
node (mtry) led to negligible performance improvements compared with default 
settings. The model (mtry = 12, ntree = 2,000) explains 47.16% of the observed 
variance, a mean of squared residuals of 0.168, and the feature contribution as 
indicated in Supplementary Table 7 ranked by importance.

RfxCas13d guide scoring. We created a user-friendly R script that readily predicts 
RfxCas13d on-target guide scores. The only user-provided argument is a single-
entry FASTA file input, minimally, of 30 nt which represents the target sequence, 
such as a transcript isoform sequence. The software first generates all possible 
23mer gRNAs, collects all required features and predicts gRNA efficacies. The 
only filter applied removes gRNAs with homopolymers of five or more Ts and six 
or more Vs (V = A, C, G). Such gRNAs may trigger early transcript termination 
for PolIII transcription or cause difficulties during oligo synthesis. The software 
returns a FASTA file with gRNA sequences ranked by the predicted standardized 
guide score. In addition, a csv file is created providing additional information. 
Optionally, the script can be used to plot the guide score distribution along the 
provided target sequence for visualization. The software is available at  
https://gitlab.com/sanjanalab/cas13.

We used this software to predict guide scores for all transcripts (including all 
biotypes: protein_coding, nonsense_mediated_decay, non_stop_decay, IG_*_gene, 
TR_*_gene, polymorphic_ pseudogene) of protein-coding genes annotated 
in GENCODE v19 (GRCh37) (n = 94,873 transcripts) and provide the top 10 
ranked 5′-UTR, coding sequence and 3′-UTR annotating gRNA sequences (see 
Supplementary Data 3). We have made all guide score predictions available online 
(https://cas13design.nygenome.org).

RfxCas13d guide-scoring validation. To validate that our initial RFGFP model 
can readily separate between poorly and well-performing crRNAs, we performed 
several experiments.

First, we chose two genes that encode for cell-surface proteins that allow for 
quantitative assessment of their expression levels by FACS. For each gene we 
predicted crRNAs for the highest expressed transcript isoform in HEK293FT cells 
(CD46: ENST00000367042.1; CD71 (TFRC): ENST00000360110.4). For each gene, 
we selected three guides present in the low-scoring quartiles (Q1 and Q2) and 
three guides in the high-scoring quartiles (Q3 and Q4). We selected the guides to 
be nonoverlapping and to reside in three different regions of the target transcript.

Then, we performed two essentiality screens with a dropout growth phenotype 
readout in HEK293FT and A375 cells, respectively. We designed two crRNA 
libraries targeting essential and control genes with a number of predicted low-
scoring and high-scoring gRNAs as described (see Screen library design and 
pooled oligo cloning). For the HEK293FT cell screen, we compared the guide 
depletion of 4 groups of 30 guides (essential gene targeted by high-scoring or 
low-scoring guide, and control genes targeted by high-scoring or low-scoring 
guide). We expected the greatest depletion for the 30 high-scoring gRNAs targeting 
essential genes. Similarly, we compared the relative guide depletion of the same 4 
groups of gRNAs in the A375 screen, with the expectation that the 20 high-scoring 
guides per essential gene would be the most depleted.

For gene ranking based on guide depletion, we used RRA39 to assign a P value 
based on the consistency of log2(FC)-based rank of the best (most depleted) N 
gRNAs per gene (for N = 1, 5 or 20) across the two A375 screen replicates. The 
−log10(P values) were then compared with other growth screens (RNAi and Cas9) 
using Spearman’s rank correlation. Specifically, we compared the RRA-derived 
log10(P value) with the log2(FC) from an RNAi-based DEMETER2 version 5 
repository28 and the merged STARS scores from a Cas9-based approach29. For the 
correlation, we used only genes with values present in all scores/modalities (all 
essential genes: n = 35; control genes: n = 15).

Furthermore, we used the log2(FC) guide depletion values to compare the 
predictive value of the RFGFP and RFcombined models. Specifically, for both essentiality 
screens we used ten essential genes (all in HEK293FT and the ten most depleted 
in A375 cells) and correlated the predicted guide scores from both models to the 
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observed log2(FC) guide depletion scores (normalized to 0–100% per gene) of all 
detected gRNAs (HEK293FT: n = 60 with 6 guides per gene; A375: n = 398 with up 
to 40 guides per gene). We made the same comparison on a per-gene level using all 
40 gRNAs per gene in the A375 screen.

Data representation. In all box plots, boxes indicate the median and interquartile 
ranges (IQRs), with whiskers indicating either 1.5× the IQR or the most extreme 
data point outside the 1.5-fold IQR. All transfection experiments show the mean of 
three replicate experiments, with individual replicates plotted as points.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Screen data have been deposited at the Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/) with the accession no. GSE142675. All code and software to 
reproduce our entire analyses are available on our gitlab repository (https://gitlab.
com/sanjanalab/cas13). Moreover, we provide precomputed gRNA predictions 
targeting all protein-coding transcripts in the human genome on our web-based 
repository (https://cas13design.nygenome.org). Other data and materials that 
support the findings of this research are available from the corresponding author 
upon reasonable request.

Code availability
The predictive on-target model as well as all code for the analyses presented in the 
letter is available on our gitlab repository (https://gitlab.com/sanjanalab/cas13).
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Sample size All screens (tiling screens and fitness screens) have been conducted in two or three replicate experiments. Detailed statistics for included 
guide numbers and guide classes can be found in Supplementary Data 5. All transfection experiments have been conducted in three 
independent biological replicate transfections. The final predictive guide model (RFcombined) was constructed using features for all 2,918 
perfect matching guides that match to coding sequences of the four targetd genes (GFP, CD46, CD55, CD71).
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Antibodies

Eukaryotic cell lines
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used BioLegend:  

CD46 #352405 clone TRA-2-10 Lot: B286717 (3μl per 1x10^6 cells),  
CD55 #311311 clone JS11 Lot: B249208 (1.5μg per 1x10^6 cells),   
CD71 (TFRC) #334105 clone CYIG4 Lot:B276134 (4μl per 1x10^6 cells)

Validation Antibodies were validated by the vendors. All antigens used were validated before. An extended list is available from the vendor.  
Examples are:  
CD46 (Antigen: Cardone J, et al. 2010. Nat. Immunol. 11:862.); 
CD55 (Antigen: Peyron P, et al. 2000. J. Immunol. 165:5186; Product: Rhys HI, et al. 2018. EBioMedicine. 29:60); 
CD71 (Antigen: Hentze M, et al. 1996. P. Natl. Acad. Sci. USA 93:8175; Product: Segal JM, et al. 2019. Nat Commun. 10:3350)
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293FT cells (also denoted to as HEK293 cells) were acquired from Thermo Fisher (R70007). A375 cells were acquired from 
ATCC (CRL-1619).

Authentication All cell lines used have been authenticated by the original vendors.

Mycoplasma contamination All cell lines were tested as mycoplasma-free using Lonza MycoAlert (#LT07-518).

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For GFP, cells were washed with PBS before analysis/sorting by flow cytometry. For CD46, CD55 and CD71 the cells were stained 
for the respective cell surface protein for 30min at 4°C , washed and measured by flow cytometry. 

Instrument Flow cytometry data acquisition and sorting were performed on a Sony SH800 sorter.

Software FlowJo (Threestar) was used for flow cytometry data analysis.

Cell population abundance For the GFP-tiling screen, we collected 7.5x10^6 cells for an unsorted input crRNA representation (1000x coverage) and sorted at 
least another 7.5x10^6 cells into 4 bins based on their GFP-intensity (lowest 20%, 20%, 20% and remaining highest 40%).  
For CD46, CD55 and CD71 tiling screens, we we collected 6x10^6 cells for an unsorted input crRNA representation (1000x 
coverage) and sorted at least another 6x10^6 cells into 2 bins based on their CD protein intensity (lowest 20%  and highest 20%). 
For the HEK293 fitness screen, we collected 2x10^6 cells per sample. For the A375 fitness screen, we collected 7x10^6 cells per 
sample. For both fitness screens this represents >1000x coverage for each sample.

Gating strategy For FACS analysis of transfection experiments, cells were gated by forward and side scatter and signal intensity to remove 
potential multiplets. If present, cells were additionally gated with a live-dead staining (LIVE/DEAD Fixable Violet Dead Cell Stain 
Kit, Thermo Fisher L34963). For each sample we analyzed at least 5000 cells. For flow cytometry experiments aside from the 
pooled screens, the gating strategy is shown in Supplementary Figure 1b. For the pooled screens, the gating strategies are shown 
in Supplementary Figure 2a and Supplementary Figure 9b.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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