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Transcriptome engineering applicationsin living cells with RNA-targeting
CRISPR effectors depend on accurate prediction of on-target activity and
off-target avoidance. Here we design and test ~200,000 RfxCas13d guide
RNAs targeting essential genes in human cells with systematically designed
mismatches and insertions and deletions (indels). We find that mismatches
andindels have a position- and context-dependent impact on Cas13d
activity, and mismatches that resultin G-U wobble pairings are better
tolerated than other single-base mismatches. Using this large-scale dataset,
we train a convolutional neural network that we term targeted inhibition

of gene expression via gRNA design (TIGER) to predict efficacy from guide
sequence and context. TIGER outperforms the existing models at predicting
on-target and off-target activity on our dataset and published datasets. We
show that TIGER scoring combined with specific mismatches yields the first
general framework to modulate transcript expression, enabling the use of
RNA-targeting CRISPRs to precisely control gene dosage.

Programmable RNA-guided, RNA-targeting type VIclustered regularly
interspaced short palindromic repeats (CRISPR)-CRISPR-associated
proteins (Cas; Casl3) enable direct manipulation of cellular RNAs with
high precision compared to previous RNA-targeting technologies'™.
Agrowing number of RNA-engineering technologies have been devel-
oped using nuclease active Cas13 or inactive dCas13 effector proteins®.
These methods critically rely on the ability of Cas13 to distinguish
between binding sites in target RNAs and closely related secondary
(off-target) binding sites based on the complementarity between guide
RNA (gRNA) sequence and bound RNA sequence. In general, the goal
is to maximize on-target gRNA activity while minimizing off-target
effects. While progress has been made in understanding Cas13 gRNA
design rules for nuclease activation and on-target activity>” ™", rela-
tively less is known about Cas13 off-target binding and activation.

Ourunderstandingis currently limited to Cas13athat hasbeenusedin
diagnostics'®" with only a few studies of off-target activity for Cas13d
systems”’, which are more commonly used for in vivo perturbation.
Several recent examples use Casl3 effectors in preclinical model sys-
tems'", emphasizing the need for high precision for any potential
human therapeutics.

Understanding the determinants of gRNA activity can not only
improve target specificity but also enable controlled/precise attenu-
ation of gene dosage. Notably, biological systems often rely on relative
gene dosage as opposed toabinary on-off state. Dose-dependent gene
expression is crucial to maintain balanced stoichiometry between
members of multiprotein complexes'® or during embryonic devel-
opment’, and underlies X-chromosome inactivation*’. Moreover,
somatic copy number variation and subsequent gene amplification

'New York Genome Center, New York City, NY, USA. 2Department of Biology, New York University, New York City, NY, USA. ®Department of Computer
Science, Columbia University, New York City, NY, USA. “Data Science Institute, Columbia University, New York City, NY, USA. Department of Systems
Biology, Columbia University, New York City, NY, USA. °These authors contributed equally: Hans-Hermann Wessels, Andrew Stirn.

e-mail: daknowles@nygenome.org; nsanjana@nygenome.org

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01830-8
http://orcid.org/0000-0001-5551-404X
http://orcid.org/0000-0002-2776-9229
http://orcid.org/0000-0003-0228-6471
http://orcid.org/0000-0002-7408-146X
http://orcid.org/0000-0002-1504-0027
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-01830-8&domain=pdf
mailto:daknowles@nygenome.org
mailto:nsanjana@nygenome.org

Article

https://doi.org/10.1038/s41587-023-01830-8

have been associated with cancer” and a large number of human
genetic diseases™.

Precise modulation of gene expression in mammalian systems
can be achieved in multiple ways. For example, synthetic promoter
sequences? or tetracycline-dependent promoter constructs® can
be used to modulate gene expression. Similarly, the insertion of
cis-regulatory elements such as miRNA binding sites in the 3’"UTRs
of endogenous genes renders them susceptible to the recruitment
of the endogenous RNA surveillance and silencing machinery®. Such
approaches, however, require a considerable amount of engineering
onanindividual target basis. In contrast, programmable nuclease-null
(dCas9) CRISPR systems provide a flexible and scalable alternative
for systematictitration of gene expression®. One caveat is that epige-
netic effector domains commonly fused to dCas9 (for example, KRAB
domain) may act more ina switch-like fashion”.

Here we set out to comprehensively investigate the effects of
closely related gRNA variants on target knockdown and predict the
on-target and off-target activity of Cas13d in human cells. We are able
to achieve strong performance predicting on-target efficacy with a
deep learning prediction model trained on both perfect match (PM)
and mismatched gRNAs. Leveraging the model’s insights into target
specificity and activity, we propose and validate anew RNA-targeting
CRISPR-based method for titration of gene dosage.

Results

RfxCasl3d screens for perfect match and variant guide RNAs
To systematically assess the efficacy of RfxCas13d gRNAs, we designed
~120,000 Cas13d gRNAs with a diverse set of mismatches and indels
to target known essential genes (Fig. 1a,b and Supplementary Data 1
and 2). This gRNA pool contains 10,000 PM gRNAs for 16 genes and
108,600 gRNAs with designed mismatches for 600 PM gRNAs for six
of these genes. In this manner, we can compare how each engineered
gRNA mutationimpacts Casl3d activity related toits cognate PMgRNA.
We designed the mismatch gRNAs to contain 1, 2 or 3 nucleotide mis-
matches and the indel gRNAs to contain 1 or 2 nucleotide indels. For
both mismatches and indels, we designed separate groups of gRNAs
withadjacent placement of mismatches/indels or random spacing of the
mismatches/indels.

Targeting known essential genes in human cells, we performed cel-
lular fitness (dropout) screens with the expectation that cells will drop out
ofthe population over time depending on therelative gRNA activityand a
corresponding degree of essential gene depletion (Fig. 1c). Welentivirally
transducedalibrary of 120,000 crRNAs intoamonoclonal HEK293FT cell
line with doxycycline-inducible nuclear-localized RfxCas13d nuclease’.
Wefound thatgRNA counts and gRNA depletion (fold change (FC) relative
tothegRNA abundance at an early time point) were highly reproducible
between replicate screens, time points and gRNA categories (Fig. 1d,
Supplementary Fig.1a-d and Supplementary Data3 and 4).

We first validated the performance of our previous random
forest on-target model (RF,,)” for PM gRNAs. For PM gRNAs, the
23 nt of the spacer region contains the reverse complement of the
intended RNA target site. Specifically, 70.1% of predicted most-active
quartile (Q4) gRNAs depleted more strongly than expected based
on a false-discovery rate (FDR) calculated using the nontargeting

(NT; negative control) gRNAs (FDR < 0.01; Fig. 1e and Supplementary
Fig. 1e). This fraction of active Q4 gRNAs ranged from ~95% (104 of
110 gRNAs) for EIF3B to ~49% for NUP133 (53 of 109 gRNAs; Fig. 1f and
Supplementary Fig. 1f). We found that active gRNAs were distributed
in clusters along the target transcript sequence, yielding significant
similarities between neighboring gRNA efficacies (autocorrelations of
r=0.13-0.60; Fig.1g,h), in agreement with our previous study (CD46
r=0.66;CD55r=0.65andCD71r=0.4)".

Indels are more deleterious than substitutions in guide RNAs
For 600 PM gRNAs predicted to have high activity by RF,, (quartile Q3
or Q4), we designed 108,600 gRNA variants (18,100 per gene). These
variant gRNAsinclude 83,400 gRNAs with single, double or triple base
substitutions. We also included 25,200 gRNAs containing single or
double indels (Fig. 1a,b). We found 66.1% of PM gRNAs to be active
(log,(FC) <-0.5,FDR < 0.01; Fig. 2a; Methods). Accumulating base sub-
stitutions gradually decreased gRNA efficacy from single mismatches
(SMs, 34.4% active gRNAs) to random triple mismatches (RTMs, 3.3%
active gRNAs; Fig. 2b). Overall, base substitutions were better tolerated
than indel variants such as single nucleotide deletions (SD) or single
nucleotideinsertions (SI) within the gRNA sequence (guides active—SM,
34.4%>SD and 20.7% > S117.9%).

Next, we calculated the relative activity for allgRNA variantsrela-
tive to their cognate PM gRNAs (Methods). Most SM variants resulted
in modest decreases in activity compared to the cognate PM gRNA
(Fig. 2c). In contrast, single indels resulted in a greater loss of activity
compared to SM variants with the greatest loss of activity for insertions
inthe centralregion ofthe gRNA (Fig. 2d,e). Unlike base substitutions,
indels introduce bulges on either gRNA or target sides, respectively.
Because the gRNA isembedded within the Cas13d enzyme®®, gRNA posi-
tioning is likely more constrained than target sequence arrangement
withinthe ternary Cas13-gRNA-target complex. This may explain why
RNAbulges onthe gRNAside (asintroduced by nucleotide insertions)
are the most disruptive.

We also confirmed the presence of the SM-intolerant seed
sequence centered on guide nucleotide positions 18 (ref. 7; Fig. 2f).
Single-base substitutions outside the seed regionled to amilder attenu-
ation of relative gRNA efficacy for all SM gRNAs. We noted that A-to-G
andtoalesser extent C-to-U substitutions within the gRNA had a milder
effect than other substitutions, including in the seed region (Fig. 2f).
A-to-G substitutions lead to G-U wobble pairing with the G on the
gRNA side, while C-to-U substitutions have the G in the target site.
We found that for all mismatch types, the contribution of G-U wob-
bles ameliorated the relative decrease in efficacy from the mismatch
(Fig. 2g and Supplementary Fig. 1h).

A deep learning model to predict guide RNA efficacy

Existing approaches to model Cas13d efficacy’’ predict knockdown
efficiencies only for gRNAs perfectly matching their target site.
Although large-scale off-target screens have empowered predictive
modeling for DNA-targeting CRISPRs like Cas9 (refs. 26,29-36) and
Casl3a-mediated RNA diagnostics in vitro'®, there have not been sys-
tematic efforts tolearn an off-target model for RNA-targeting CRISPRs
invivo. Toward this end, we adopted a convolutional neural network

Fig.1|Pooled CRISPR-Cas13 essentiality screen assaying Cas13d gRNA
efficacy. a, Design of pooled CRISPR-Cas13d screen for mapping gRNA variants
with mismatch and indel changes to PM gRNAs. b, Composition of gRNA library
containing 120,000 perfectly matching and mismatched gRNA sequences
targeting the coding region of essential genes. ¢, Abundance of individual gRNAs
was measured in TetO-RfxCas13d-HEK293FT cells over 30 d (n =3 independent
transduction replicates). d, The Pearson correlation of gRNA abundance as
log,(FC) onday15and day 30 relative to the day O input representation showing
PMgRNAs asamean of three replicates (n =13,782). e, Fraction of active gRNAs

(log,(FC) <-0.5) for PM gRNAs separated by RF,, quartile predictions. f, Fraction
ofactive (log,(FC) < —0.5) predicted quartile 4 (Q4) PM gRNAs for all 16 essential
genetargets. g, Relationship between median distance between neighboring PM
gRNAs and autocorrelation of log,(FC) atlag = 1(n = 16 target gene transcripts).
Line indicates linear regression and 95% confidence interval with the Pearson
correlation (r) and Pvalue (two-sided ¢-test). h, Distribution of PM gRNAs

along the coding region of the 16 target gene transcripts and their log,(FC)
enrichments. Negative log,(FC) values indicate better transcript knockdown.
p,autocorrelation of log,(FC) withlag =1.
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(CNN) architecture similar to those pioneered in computer vision”*®  has two convolution layers followed by a max-pooling layer and then
to predict aguide’s efficacy from a one-hot encoding of its sequence.  interleaves three dropout and dense layers for a total of two hidden
Similar to a previous CNN for Cas9 off-target prediction®, our model layers plus an output layer.
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Fig.2|Large-scale mapping of Cas13d gRNA mismatch activity. a, Empirical
cumulative distribution of gRNA depletion for all gRNAs by introduced mutation
type. Vertical line indicates the cutoff for active gRNAs (log,(FC) < -0.5).

b, Fraction of active gRNAs for gRNAs as shown in a. c—f, Relative targeting activity
(fraction of parental PM gRNA log,(FC)) of gRNAs for all PM gRNA derivatives
with mismatches or indels at the indicated position relative to their cognate PM
gRNAs (n =388 reference PM gRNAs with log,(FC) < -0.5. Each cellindicates the
mean of gRNAs). ¢, Left: heatmap depicting all mismatch types. Right: boxplot
highlighting the full distribution of relative gRNA activity for SM gRNAs.

G-U wobble in SM gRNA

d, Left: heatmap depicting all deletion types. Right: boxplot highlighting the SD
gRNAs. e, Left: heatmap depicting all insertion types. Right: boxplot highlighting
the SIgRNAs. f, Detailed representation of relative activity for SMgRNA
separated by reference guide nucleotide (bottom) or substitution identity (top)
for each mismatch position. g, Relative targeting efficacy for gRNAs containing O
or1G-Uwobble base pairs compared to unpaired mismatches for all mismatched
gRNA types (n =388 reference PM gRNAs with log,(FC) < -0.5). AllgRNA
abbreviations are defined in Fig. 1a. For boxplots in c-eand g, the boxes indicate
the median and interquartile range (IQR) with whiskers indicating 1.5 IQR.

Our model has the following two architectural augmentations
beyond those used in a previous study: additional sequence context
flanking the 23 nt target site and the flexibility to input a vector of

nonsequence features atour first dense layer. We considered six groups
of nonsequence features as follows: (1) crRNA folding minimum free
energy (MFE), (2) the RNA-RNA hybridization MFE between spacer and
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Fig.3|A deep learning model to predict optimal Cas13d gRNAs. a, TIGER
combines one-hot-encoded guide and target sequences for sequence input,
following an AlexNet architecture but allowing for nonsequence features as
inputs to the first dense layer. b, Correlation of predictions with additional
sequence context (5 only, 3’ only and combined 5’ and 3’) to the 23nt gRNA
target site (tenfold CV randomized at the target site level) using a sequence-only
model. H, denotes the best-performing condition and all differences between
other conditions and H, are significant (P < 0.05, Steiger’s test**). ¢, The effect
ofincluding different feature groups (individually and cumulatively) on the
correlation of predictions aggregated from the heldout target sites (n =10
random folds). We present feature groups in descending order of increased
correlation (individually).d, ROC curve and other performance metrics for
predictions aggregated from the heldout genes (n = 16) of the survival screen of
essential genes. e, ROC curve and other performance metrics for all gRNAs from

(log,(FC))

apreviously published screen using flow cytometry of cell surface proteins’. We
employ a Steiger’s test> for the Pearson and Spearman comparisons, DeLong’s
test™* for AUROC comparisons and a bootstrapped Kolmogorov-Smirnov
test® for AUPRC comparisons (d,e). Values denote aggregate performance
over CV folds and error bars denote +2s.e. f, Design of pooled CRISPR-Cas13d
screen targeting 5,166 genes with eight high-efficacy gRNAs from TIGER . mpined
predictions. g, The top ten most depleted genes show consistent depletionin
eachcellline (n =8 gRNAs per target gene). Dotted lines (black) indicate the
1stand 99th percentiles for NT gRNA distribution. h, Fraction of active gRNAs
(more depleted than the 99th percentile of the NT gRNAs) as a function of gene
depletion. Gray linesindicate 99th percentile of NT gRNA distribution for HAP1
(solid) and HEK293FT (dashed) cells. i, ROC curve for DepMap essential genes for
screens depicted in f-h (n=1,082 essential genes, n = 458 nonessential genes).
Numbersin parenthesis next to each cell line name indicate AUROC.

target site (multiple positions), (3) target accessibility (that is, a lack
of predicted secondary structure in multiple windows), (4) the target
site’s proximity to an exon-exon junction (5’ distance, 3’ distance), (5)
thetargetsite’slocation within the transcript (relative positionin CDS)
and 6) binary featuresrelated to the gRNA’s secondary structure (folded
repeat and G-quadruplex). We termed this deep learning approach as
Targeted Inhibition of Gene Expression viagRNA design (TIGER; Fig. 3a).

We first sought to determine the optimal flanking target sequence
context when using only nucleotide sequence or all features (Fig. 3b
and Supplementary Fig. 2a). We added additional context to just the
5-end, just the 3’-end and equally to both ends and predicted gRNA
efficacy using tenfold cross-validation (CV) over target sites (Supple-
mentary Note). Consistent with findings from another recent study®,
we found that additional 5’ target site context of three nucleotides
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was optimal for the sequence-only model. However, theimpact of this
additional context is reduced when including nonsequence features,
which capture 5’-end target accessibility and likely make the extra 5’
context redundant. When analyzing the impact of each nonsequence
featurein TIGER, we find that target RNA accessibility yields the great-
estincreasein performance (Fig. 3c).

Although our CNNis aregression model that predicts FCinguide
abundance, we can also threshold our predictions to classify active
guides versus inactive ones. We again identified active gRNAs based
on an empirical FDR calculated from the NT gRNAs (FDR < 0.01). To
best assess generalization across the transcriptome, we aggregated
predictions across gene-level CV (holding all gRNAs for each of the
16 genes in turn) to compute correlations between predictions and
observations (Pearson and Spearman correlations), area under the
receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC; Fig. 3d and Supplementary Fig. 2b).
For each of these metrics, we estimated an upper bound by taking
advantage of the three biological replicates of our Cas13d essential
gene screen, quantifying the error when using a heldout replicate to
predictthe mean of the other tworeplicates. Across all four evaluation
metrics, we find that TIGER trained on PM gRNAs in combination with
mismatched gRNASs (TIGER mpinea) OUtperforms or matches TIGER
trained on PM alone (TIGER,,..,.e:) and yields superior performance
compared to our previously published model (RF,,)” and two recent
deep learning models®’. The gene-level CV (all gRNAs for a target gene
are held out from the training set) ensures that, during training, TIGER
does not have access to any data related to the particular gene used
for evaluation.

In addition to holding out all gRNAs for individual genes, we
repeated these experiments with target site-level or gRNA-level CV
(Supplementary Fig. 2c-h). Holding out target sites ensures thata PM
gRNA’s mismatched variants will not be used in training (for example,
active SM gRNAs are highly informative of their PM parents; Supple-
mentary Note). Under these CV strategies, the on-target and combined
models observe aboost in performancerelative to gene-level CV. Here
too, the combined model outperforms all other considered models.
Both TIGER models perform close to this estimated upper bound for
the Spearman correlation, suggesting that they are adept at filtering
variation due to technical noise.

In addition to the survival screen with essential gene-targeting
gRNAs, we further evaluated model performance using a separate
gRNA dataset with a different phenotypic selection (flow cytometry of
cell surface proteins’, which has been used by other groups to assess
generalization performance®’. Specifically, we use PM gRNAs from
our survival screen as training data (PM and mismatched gRNAs in
case of TIGER ,mpinea), holding out PM gRNAs from the cell surface
proteinscreen as test data’. To compare with our previous RF,, model,
weretraineditsolely onthelarger essentiality screen dataset (Fig. 1a).
Notably, this validation dataset contains no genes or target sites in
common with our survival screen. When testing generalization per-
formance on this validation dataset, we find that TIGER ., pineq and
TIGER ,,.coree: yield best-in-class predictions (Fig. 3e and Supplementary
Fig. 2i). To further benchmark TIGER, we also trained a linear regres-
sion model and a recurrent neural network with Bidirectional Gated
Recurrent Unit (BiGRU) model and, across both datasets, we found
that TIGER was superior to linear regression and comparable to the
recurrent neural network (Supplementary Fig. 3). Taken together, we
find that TIGER’s predictions generalize over different screen modali-
ties (cell proliferation and surface marker expression) and target genes
(essential and nonessential).

Feature importance by Shapley additive explanations

Todetermine TIGER's learned gRNA design rules, we performed a ten-
fold CV of our combined model (TIGER..,pineq) With target site-level
CV. For each holdout, we collected Shapley additive explanations

(SHAP)* values for sequence and nonsequence features. For sequence
features of PM gRNAs, we observed a strong contribution of G and
C nucleotides in the seed region (nucleotides 15-21) of the gRNA
(Supplementary Fig. 4a,b), reflecting the local importance of G and
Cnucleotides”®. Similarly, we examined the Pearson correlations and
SHAP values for the gRNA substitutions (Supplementary Fig. 4c,d).
We found that the CNN model correctly learned the increased impor-
tance of SMsinthe seed regionincluding the differential contribution
of G-U mismatched base pairing. We also examined SHAP values for
nonsequence features for PM guides alone or all PM plus mismatched
guides (Supplementary Fig. 4e,f). Among nonsequence features, we
found that RNA-RNA hybridization (as in target site accessibility,
gRNA-RNA hybridization MFE and crRNA folding MFE) had the larg-
est contributions to model predictions, consistent with our earlier
findings (Fig. 3¢).

TIGER consistently predicts highly active gRNAs

Next, we sought to test the generalizability of our TIGER, pineq model
at scale. We predicted eight high-efficacy gRNAs for 5,166 genes and
performed proliferation screensin two different cell lines (HEK293FT
and HAP1; Fig. 3f and Supplementary Data 5-8). We noticed high con-
sistency between gRNAs that target the same gene (Fig. 3g). Extending
this analysis, we found that TIGER ., ,ineq COTrectly predicted active
gRNAs (defined as log,(FC) < -1) in the HEK293 and HAP1 screens for
91%and 95%, respectively, of the chosen gRNAs (Fig. 3h), highlighting
therobustness and generalizability of our on-target model across cell
lines and thousands of unseen genes.

Having confirmed robust targeting, we next assessed whether
RNA-targeting RfxCas13d CRISPR screens could discriminate essen-
tial genes from nonessential genes. Among the 5,166 target genes
includedin these screens, we embedded a set of1,082 common essen-
tialgenes and 458 nonessential genes based on DepMap classifications
(Methods). We found that we could successfully discriminate essential
genes against control genes using gRNA efficacy predictions using the
TIGER . pines Model (Fig. 3i, AUROC 0.86 and 0.95 in HEK293FT and
HAPI1 cells). Gene depletion in HAP1 cells was generally more pro-
nounced compared to thatin HEK293FT cells (Supplementary Fig. 5a).

Previous reports have suggested that cell fitness (and there-
fore cell proliferation) may be affected by nonspecific collateral
RfxCas13d activity as afunction of target gene expression*®*. However,
itis unclear if the collateral activity affects cell fitness in a controlled
setting with single integration of RfxCas13d effector protein and gRNA
expression cassettes. To explore this relationship, we analyzed gene
dropoutacrossalarge span of expression levels (1to>1,000 transcripts
per million (TPM)). For common essential genes, we also observed a
known dependency of gene expression and gene depletion*>**, which
was much reduced for the nonessential gene group (Supplementary
Fig. 5b). For nonessential genes, we noticed no evidence of drop-
out as a function of gene expression in HEK293FT. For the haploid
HAP1 cells, we noticed that a relationship between gene expression
and control gene depletion was mainly driven by genes expressed
>100 TPM. It is worth noting that only ~5% of 19,177 protein-coding
genes are expressed at levels above 100 TPM in human cell lines
(n=1,377 Cancer Cell Line Encyclopedia cell lines), and the majority
of these genes are classified as common essential genes in DepMap.
Nonspecific collateral activity may only affect a small subset (<6%) of
very highly expressed genes (>100 TPM) in sensitive cells with single-
integration Casl3d screens. Despite this, we found that HAP1 cells
showed higher sensitivity (AUROC) for the identification of essential
genes (Fig. 3i).

Taken together, we find that TIGER ., ined SRNA predictions are
robust and generalizable across thousands of genes in multiple cell
lines and that undesired viability defects based on target gene expres-
sionmay be cell-type-dependent and usually only occur for asubset of
highly expressed genes.
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Fig. 4| Training TIGER using gRNAs with mismatches enables prediction of
off-target activity and transcript modulation using gRNAs with SMs. a, The
correlation between observed and TIGER-predicted gRNA abundance by gRNA
design type.b, The correlation between change in observed and TIGER-predicted
gRNA abundance by gRNA design type. The change in gRNA abundance is
defined as the difference in log,(FC) for a particular gRNA with mismatches and
its cognate PMgRNA. ¢, ROC curves for each gRNA design type from tenfold
target-site CV.d, Aggregate correlation (Pearson and Spearman) and aggregated
areas under the ROC and precision-recall curves for each gRNA design type from
tenfold target-site CV. Values denote aggregate performance over CV folds and
error bars denote +2s.e. e, A framework for using gRNA with SMs to modulate
Casl3 targeting activity. f, Correlation of predicted and observed relative activity
ratio for all 23 SM gRNAs per highly active (log,(FC) < -1) target sites (n =324

Predicted quintile (%)

target sites). g, Confusion matrix for efficiency ratios between a gRNA with

an SMto theintended target RNA binned by quintiles for all active target sites
(FDR <0.01; n=393 target sites with n=9,032 SM gRNA variants). Each column
isnormalized. h, Design of pooled CRISPR-Cas13d screen for TIGER .o myined SRNA
predictions targeting 1,082 common essential genes with four high-efficacy
PM gRNAs, and ten SM gRNAs with varying relative activity. i, Correlation of
predicted and observed relative activity ratio for all ten SM gRNAs per highly
active PMgRNA (n=3,161gRNAs with log,(FC) < -1).j, Confusion matrix for
efficiency ratios between a gRNA withan SM to the intended target RNA binned
by quintiles (n =30,582 SM gRNA variants). Each column is normalized. For
boxplotsinfandi, the boxes indicate the median and IQRs with whiskers
indicating 1.5 IQR.

Off-target prediction and gene knockdown titration

Although multiple groups have developed predictive models of
on-target Casl13d activity, there has been comparatively less work on
off-target activity and no predictive models exist for Cas13d. Similarly,
for CRISPR-Cas9 gRNAs, nearly all deep learning approaches focus on
predicting on-activity and do notinclude separate inputs for gRNA and
target site sequences®*******¢ TIGER’s architecture easily accom-
modates mismatches between target and gRNA (Fig. 3a). In addition
to the ability to predict on-target efficacy for PM gRNA when trained
on PM and mismatched data (TIGER pineq), W€ SOUght to extend the

usability of TIGER to enable precise off-target predictions via target
site-level CV (Supplementary Note). This validation strategy avoids PM
and SM guides for the same target appearing in training and validation.

When predicting changes in abundance for mismatch variant
gRNAs, we find that the correlation between TIGER’s predictions and
observed values decreases as the number of mismatches and the dis-
tance between themincreases (Fig.4aand Supplementary Fig. 6a). We
wondered whether this might be due in part to the variability in effect
size between different PM gRNAs (Fig. 2d,e). To test this, we instead
measured the difference in the predicted gRNA abundance between
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variant gRNAs and their cognate PM gRNA (Fig. 4b and Supplementary
Fig. 6b). Here we find that the correlation no longer decreases with
increasing mismatches, suggesting that when we explicitly account
for the variability in PM gRNAs, TIGER is able to predict the effect of
different mismatches. As we did for PM gRNAs, we computed four
performance metrics for each category of mismatch variant gRNAs
(Fig. 4c,d and Supplementary Fig. 6¢). This time, however, we com-
pared our TIGER ,ineg Model (trained on PM and mismatches) to a
TIGER yff.¢orgee model (trained on mismatched gRNAs only). Asis the case
with on-target prediction, we find that the combined model is superior
(Supplementary Fig. 6d). Using anindependent pooled screen (surface
protein expression)’, which also contains gRNAs with SM and double
mismatch (DM) variants, we further confirmed our model’s ability to
predict gRNA efficacy after being trained on the survival screen dataset
(Supplementary Fig. 6e).

Given that TIGER can predict a PM gRNA's efficacy and how this
efficacy changes when mismatches areintroduced, we can bothiden-
tify mismatched target sites with off-target activity and engineer mis-
matchesto precisely reducegRNA efficacy andtiter knockdown (Fig.4e).
To this end, we defined the 'efficacy ratio' as the ratio of the FC of an
SM gRNA to the FC of its PM cognate gRNA. Using target site-level CV,
we compared predicted and observed relative gRNA activity for the 23
SM gRNA variants designed for each individual target site. We found
ahigh correlation between predicted and observed relative activities
(median, r=0.76; median, p = 0.74, n = 324 active target sites with PM
log,(FC) < -1; Fig. 4f). We binned all observed and predicted efficacy
ratios for SM gRNAs with active cognate PM gRNAs into quintiles to
compute a confusion matrix (Fig. 4g and Supplementary Data 9). For
each quintile, we found that SM gRNAs were most often correctly classi-
fied.In particular, TIGER achieves the best performance at the extremes
(0-20 and 80-100) and can determine those SMs with high accuracy
that minimally impact or maximally disrupt activity.

Finally, we sought to test the generalizability of our TIGER
off-target model for gene essentiality titration across thousands of
genes and target sites. Specifically, we predicted four high-efficacy
gRNAs for1,082 common essential genes and designed ten gRNA vari-
ants with single nucleotide mismatches for each PM gRNA target site
(n=47,608 PMand SM gRNAs). Using a pooled proliferationscreenina
different cellline (HAP1), we measured relative activity loss compared
tothe cognate PMgRNA viadepletion (Fig.4h and Supplementary Data
10-12). We found a high correlation between predicted and observed
relative activities (median, r= 0.83; median, p = 0.81, n = 3,161 target
sites with cognate PM log,(FC) < -1; Fig. 4i, Supplementary Fig. 6f
and Supplementary Data 13). In this independent screen, we found
strong agreement across quintiles (Fig. 4j). This suggests that our
model is able to predict gRNA variants with a defined relative activ-
ity with high accuracy for unseen target sites and generalizes across
celllines.

Discussion

In this study, we generated a large Cas13d dataset that measures the
activity of 200,000 gRNAs across multiple human cell lines and per-
formed a comprehensive assessment of Cas13d gRNA on-target and
off-target activity. Specifically, we sought to characterize PM gRNA
activity determinants and gRNAs permutations across a large set of
nucleotide mismatches and indels relative to their cognate target
sites. We found that agRNA’s ability to trigger Cas13d nuclease activity
depends onthe permutation position within the gRNA, the nucleotide
identity and the target site context. Previous studies have not character-
ized certain gRNA permutations such asindels. Our analysis shows that
mismatches are generally better tolerated compared to more disruptive
indelsin gRNA or target RNA sequences. Using this unique dataset, we
trained the TIGER CNN model for on-target activity and off-target activ-
ity. We find that TIGER has strong performance for Cas13d on-target
activity compared to existing Cas13d on-target models including those

with larger training sets. Of relevance for understanding impacts across
thetranscriptome, our TIGER modelis acompelling attempt to under-
stand and model Cas13d off-target binding and nuclease activation.
Finally, we apply our TIGER platform to develop anapproachfor precise
and massively parallel interrogation of gene dosage.

New CRISPR technologies hold great promise for a new gener-
ation of therapeutic agents. Among these, RNA-targeting CRISPR
proteins have recently been shown to provide therapeutic values in
disease models'>". High precision is key to the safety of therapeutic
RNA-targeting CRISPR agents. We believe that TIGER predictions will
enable ranking and ultimately avoidance of undesired off-target bind-
ingsites and nuclease activation, and further spur the development of
RNA-targeting therapeutics. The ability to distinguish between closely
related target sites may enable the targeting of allelic variants and other
nearly undruggable targets like fusion gene products”.

Furthermore, our model can be used for precise modulation of
target RNA knockdown at scale. Specifically, our study suggests that
RNA-targeting CRISPR perturbations can be used to systematically
study the effect of gene dosage at the RNA levels. This platform funda-
mentally extends on previous microRNA-based platforms® that on the
one hand, alack of scalability due to laborious target site engineering
and, onthe other hand, alack of target-specificity if engineered microR-
NAs are provided exogenously due to their short target site recognition
sequence. Inaddition, tuning of gene expression at the RNA level may
be beneficial compared to modulation at the DNA level, as gene expres-
sion initiation is inherently stochastic*® and biological systems have
evolved in away to fine-tune gene expression post-transcriptionally*>*°,
Other DNA-targeting (for example, dCas9-based) CRISPR approaches
have been proposed for gene expression modulation?. However, it
is unclear if epigenetic effector domains (for example, KRAB) fused
dCas9 proteins are well suited as they may act more in a binary on-off
fashion”*', and may lack precision for closely spaced genes due to the
spreading of chromatin modifications and DNA methylation®?. Here
we provide precise measurements for the titration of 1,082 essential
genes across thousands of target sites confirming the TIGER model’s
prediction accuracy. While we observe a high degree of concord-
ance between measured essentiality and predicted gRNA efficacy,
our methods, similar to previous CRISPR-based methods*, may be
limited by the assumption that RNA knockdown and gene essential-
ity scale linearly. Therefore, future experiments are needed to spe-
cifically evaluate differences between genes with alinear relationship
between expression and essentiality and those that require threshold
expression levels.

Taken together, we believe that the ability to model the effect of
nucleotide mismatches not only allows for an enhanced understanding
of gRNA on-target specificity and off-target avoidance but also enables
precise target knockdown to a defined degree that will be useful for
diverse transcriptome engineering applications.
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Methods

Cell culture

Doxycycline-inducible RfxCas13d-NLS HEK293FT and HAP1 cells
were generated via lentiviral transgenesis (Addgene,138149). RfxC-
as13d-NLSHEK293FT and HAP1 cells were maintained at 37 °C with 5%
carbon dioxide in D10 media or 110 media, respectively. Dulbecco’s
Modified Eagle Medium with high glucose and stabilized L-glutamine
(Caisson, DML23) or Iscove’s Modified Dulbecco’s Medium (Caisson,
IMLO2) supplemented with 10% fetal bovine serum (Serum Plus II;
Sigma-Aldrich, 14009C) and 5 pg ml™ Blasticidin S (Thermo Fisher
Scientific, A1113903).

Pooled lentiviral production and screening

Lentivirus was produced via transfection of library plasmid pool
and appropriate packaging plasmids (psPAX2—Addgene, 12260;
pMD2.G—Addgene, 12259) using linear polyethylenimine MW25000
(Polysciences, 23966). We seeded ten million HEK293FT cells per 10 cm
dish and transfected with 60 pl polyethylenimine, 9.2 pg plasmid pool,
6.4 pg psPAX2and 4.4 pg pMD2.G. At 3 d post-transfection, viral super-
natant was collected and passed through a 0.45-pm filter and stored at
-80 °C until further use.

Doxycycline-inducible RfxCas13d-NLS HEK293FT and HAP1 cells
were transduced with the pooled library lentivirus in separate infection
replicates, ensuring atleast1,000x guide representationin the selected
cell pool perinfectionreplicate using spinfection. We performed three
or four independent infection replicate screens/experiments. After
24 h, cells were selected with 1 pg ml™ puromycin (Thermo Fisher
Scientific; A1113803), resulting in ~30% cell survival. Puromycin selec-
tion was performed ~48 h to 72 h after the addition of puromycin.
Assuming independent infection events (Poisson), we determined
that ~-83% of surviving cells received a single sgRNA construct®. RfxC-
asl3d expressionwasinduced by the addition of 1 pg ml™ doxycycline
(Sigma-Aldrich, D9891) upon complete puromycin selection at the time
ofinputsample collection (day 0). Cells were passed every 2-3 d (main-
taining full representation) and supplemented with fresh doxycycline.
For ourinitial screen, we collected genomic DNA (gDNA; atleast1,000
cells per construct representation) from each sample on day 0, day 15
and day 30. For the TIGER on-target and titration screens, we collected
samples onday 0, day 7 and day 14.

Screen library design and pooled oligo cloning

For this study, we designed the following three CRISPR-Cas13d gRNA
libraries: (1) a total of 120,000 gRNA libraries tiling 16 essential genes
with PM, mismatch and indel gRNAs (Supplementary Dataland 2),
(2) atotal of 42,326 gRNA on-target libraries were designed using our
TIGER o mpines Model targeting 5,166 target genes with eight PM gRNAs
(Supplementary Data5) and (3) atotal of 48,608 gRNA titration libraries
targeting 1,082 essential genes with four PMs and ten SM gRNAs (Sup-
plementary Data10). For each target gene, we designed gRNAs against
the most abundantisoformusing publicly available transcriptisoform
quantifications from the Cancer Cell Line Encyclopedia for HEK-TE
quantification (https://sites.broadinstitute.org/ccle/).

For thefirstlibrary, we selected 16 genes (Supplementary Datal)
previously found to be essential using RNA-targeting CRISPR screens’.
We predicted gRNA efficacies for all possible 23-mer gRNAs using
our RF,, model with minimal constraints (T-homopolymer < 4,
V-homopolymer < 5)”. We only considered gRNAs falling within the
codingregionboundaries, which have been shown to be the mostactive
previously’. For ten genes, we selected, if possible, ~100 evenly spaced
PMgRNAs for each prediction quartile to atotal of 400 gRNAs. For six
genes, we selected 1,000 PM gRNAs in the same way across all predic-
tion quartiles. For one of the six genes, we selected 100 PM gRNAs in
the most effective quartiles Q3 (30 gRNAs) and Q4 (70 gRNAs) and
designed 181 gRNA variants per parental reference PM gRNA. These
181variantgRNAsincluded 23 SMgRNAs, 50 random DM gRNAs, eight

consecutive DMs, 50 RTMs, eight consecutive TMs, eight SDs, eightran-
domdoublenucleotide deletions (DDs), five consecutive double dele-
tions (CDs), eight Sls, eight random double nucleotide insertions (DIs)
and five consecutive double insertions (Cls). For nucleotide substitu-
tionorinsertions, we chose arandom base avoiding self-substitutions
and terminal thymidine/uridine (T/U) bases. We filtered PM gRNAs
and derivatives to not end with a T/U at position 23, as it would be
interpreted as the start of the Pol lll-terminator sequence directly
downstream of the gRNAs and would lead to gRNAs truncations. For SM
gRNA, werandomly sampled one nucleotide substitution per position
to evenly cover all 23 positions. For all other categories, we randomly
sampled fromall possible variants. Intotal, we designed 120,000 gRNAs
(Supplementary Data2,10,000 PM gRNAs, 108,600 PM gRNA variants
and 1,400 NT control guides with more than three mismatches to the
hgl9 transcriptome).

For the second and third libraries, we predicted PMand SM gRNA
efficacies using our TIGER ,pineg Model. In total, we designed gRNAs for
5,166 genes. We included several (not mutually exclusive) gene groups
as follows: 1,082 common essential genes (DepMap release 08-2021;
DepMap score < -1in =500 cell lines or scored in all five screens in
ref. 58), 1,052 other genes (DepMap score <—0.5 in =100 cell lines or
scored in at least three screens in ref. 58), 1,477 RNA binding protein
genes”, 1,706 transcription factor genes® and 458 control genes (Dep-
Map score between —0.1 and +0.1in =700 cell lines, spanning a wide
range of gene expression values from1to>1,000 TPM). For all 5,166 tar-
getgenes, we designed eight top PM gRNAs targeting the genes coding
region. Forthe1,082 essential genes, we designed four top PMgRNAs for
ten SMgRNA variants, randomly sampling across the 69 possible vari-
antsper PMgRNAwitharoughly evenspread of predicted low-activity to
high-activity SMgRNA variants. Weadded 1,000 NT control guides with
more than three mismatches to the hgl9 transcriptome. On-target and
titration libraries were designed together, padded by library-specific
priming sites enabling separate PCR amplification and plasmid
library cloning.

The pooled crRNA libraries were synthesized as single-stranded
oligonucleotides (Twist Biosciences) and then PCR amplified in one
reaction per 10,000 gRNAs with a 50-pl reaction volume—0.5 pl Q5
polymerase (NEB), 10 pl 5% reaction buffer, 2 pl oligo pool (1 ng ul™),
2.5 plof eachforward and reverse primer (10 pM), 2.5 pl dNTPs (10 mM)
and 30 pl water. PCR conditions were 98 °C/30 s, 8x or 9x (98 °C/10 s,
63°C/10 sand 72 °C/15 s) and 72 °C/3 min. The PCR product was either
gel-purified or purified using the Zymo Clean and Concentrator 25 kit
and then Gibson-cloned into BsmBI-digested pLentiRfxGuide-Puro
(Addgene, 138151) using eight Gibson reactions with a 20-pl reaction
volume each time—500 ng digested plasmid (0.088 pmol), 123.15 ng
purified oligo pool (1.3245 pmol, 15:1 molar ratio), 10 pl 2x Gibson
Assembly Master Mix (NEB), incubated for1 hat 50 °C.Each gRNA was
represented by >200 colonies. Complete library representation with
minimal bias (90th percentile/10th percentile gRNA read ratios of ~2:5
forall libraries) was verified by lllumina sequencing (MiSeq).

Screenreadout and read analysis

We used atwo-step PCR protocol (PCR1and PCR2) to amplify the gRNA
cassette for lllumina sequencing from gDNA. The gDNA was extracted
from screen cells using the following protocol*’: for 100 million cells,
12 ml of NK lysis buffer (50 mM Tris, 50 mM ethylenediaminetetraacetic
acid, 1% SDS and pH 8) was used for cell lysis. Once cells were resus-
pended, 60 pl of 20 mg mI™ Proteinase K (Qiagen) was added and
the sample was incubated at 55 °C overnight. The next day, 60 pl of
20 mg ml™ RNase A (Qiagen) was added and mixed, and samples were
incubated at 37 °C for 30 min. Then, 4 mlof prechilled 7.5 Mammonium
acetatewasadded, and samples were vortexed and spun at4,000g for
10 min. The supernatant was placed inanew tube, mixed well with12 ml
isopropanol and spun at 4,000g for 10 min. DNA pellets were washed
with12 mlof 70% ethanol, spunand dried, and pellets were resuspended
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with 0.2x TE buffer (Sigma-Aldrich). In addition, we also generated
linearized plasmid library input and diluted it down to mimic similar
copy number conditions as the gDNA samples.

Forthe PCR1reaction, we used 960 pg (screen1) or 880 g (screens
2 and 3) gDNA for each sample. For each sample, we performed 96
(screen 1) or 88 (screens 2 and 3) 100 pl PCR1 reactions with a 100-pl
reaction volume—10 pl10x Taq buffer, 0.02 U pl™” Taq-B enzyme (Enzy-
matics, P7250L), 0.2 mM dNTPs, 0.2 uM forward and reverse primers
and 100 ng gDNA per pl; thermocycling conditions for PCR1 were
94 °C/305,10x% (screen1) or18x (screens2and 3; 94 °C/10 s,55°C/30s,
68 °C/45 s) and 68 °C/3 min. Because our screen 1 library contained a
large number of gRNAs withahamming distance of one to one another,
we decided to only perform ten cycles of PCRI. For each sample, all
PCR1 products were pooled and mixed.

For each sample, we performed 24 (screen 1) or 6 (screens 2 and
3) PCR2 reactions with a 100-pl reaction volume—20 pl 5x Q5 buffer
(NEB), 0.01U pl™ Q5 enzyme, 20 pl PCR1 product, 0.2 mM dNTPs and
0.4 uM forward and reverse PCR2 primers in 100 pl. Thermocycling
conditions for PCR2were 98 °C/30 s,18% (screen 1) or 8x (screens2and
3;98°C/10s,63°C/30 sand 72 °C/45 s) and 72 °C/5 min. For screen1, we
performed an additional PCR2 on the linearized plasmid pool sample
with either Q5 or Taqg-B polymerase. We found raw counts to be highly
correlated with no obvious influence due to the choice of polymerase.
PCR primers can be found in Supplementary Data 14.

For eachsample, PCR2 products were pooled, followed by normali-
zation (gel-based band densitometry quantification), before combin-
ing equal amount of uniquely barcoded samples. The pooled product
was then purified using SPRIbeads. First, we performed a 0.6x vol/vol
SPRItoremove gDNA carryover, followed by the addition of a 0.3x vol/
volSPRI(0.6 + 0.3 = 0.9xfinal) to the supernatant to purify the ~260 bp
PCR product. Oligonucleotides can be found in Supplementary Data
14. The final amplicons were sequenced on Illumina NextSeq 500—II
MidOutput 1 x 150 v2.5 (screen 1) and lllumina NextSeq 500—II High-
Output1x150v2.5(screens2and 3).

Reads werefirst demultiplexed based onllluminai7 barcodes pre-
sentin PCR2 reverse primers using bcl2fastq and then by their custom
in-read 5’ barcode allowing for one mismatch. They were trimmed to
the expected gRNA length by searching for known anchor sequences
relative to the guide sequence. They were collapsed (FASTX-Toolkit) to
count perfect duplicates followed by exact string-matchintersection
with thereference toretain only perfectly matching and unique align-
ments. Theraw gRNA counts (Supplementary Data 3, 6 and 11) were nor-
malized using amedian of ratio method® and then batch-corrected for
biological replicates using combat implemented in the SVAR package®.
Nonreproducible technical outliers were removed by flagging indi-
vidual values with high variance within replicate samples of each time
point (DO, D15and D30 for screen1and DO, D7 and D14 for screens 2 and
3). These outlier counts are acommon contaminant in early-passage
input samples due to plasmid carryover from virus production in the
viral supernatant used for infection®. Specifically, we calculated the
log,-transformed variance across all samples for each gRNA. Then,
we calculated the variance within each time point across all replicate
samples and flagged individual gRNA counts within the upper 0.6%
variance percentile (for example, cutoff = -1.366 for screen 1). We only
flagged individual countsifthose were presentin the upper half of the
countdistribution to avoid masking variance withindepleting gRNAs.
Because we had threereplicates, wereplaced the flagged count with NA
butkept the other two unflagged replicates. For screen1, we removed
154 gRNAs due to all filtering steps (28 gRNAs were not detected; 126
gRNAswereonly lowly represented in the plasmid library with less than
60 normalized counts).

gRNA enrichments (Supplementary Data 4, 7 and 12) were cal-
culated by building the count ratios between a time point and the
corresponding input (day 0) sample for each replicate followed by
log,-transformation (log,(FC)). Consistency between replicates was

estimated using Pearson correlations and robust rank aggregation®*.
For data representation and modeling, we used the mean log,(FC)
acrossreplicates. Deltalog,(FC) for mismatching guides was calculated
by subtracting the log,(FC) of the permuted gRNA from the PM refer-
enceguide. For datarepresentationsin Figs.1and 2, we normalized the
observed log,(FC) guide valuesin the following way: for each gene Din
the dataset, we computed the upper and lower quartiles of the guide
log,(FC) (UQ, and LQ,, respectively) as well as the corresponding
quartiles for thelog,(FC) among all datasets pooled together (UQ,and
LQ,). We then updated each FC x as follows:

x—-LQp

x= (mwop -1Qp) +1Qy)

Gene essentiality normalization and determination of active
guides

Given that essentiality varies across the 16 genes in our first pooled
library (thatis, some genes are more essential than others), we experi-
mented with different per-gene normalization approaches (including
no normalization) to equalize survival effects across all genes in our
survival screen before data modeling. All of our considered transfor-
mations are location-scale transformations, where the location and
scale were derived separately for each gene. Data were transformed
as follows: (x - location)/scale. We found that the best generalization
performance was obtained using median log,(FC) as the location and
the distance between the 10th and 90th percentiles as the scale.

We used the distribution of NT gRNAs to determine which gRNAs
targeting essential genes to consider as being active. We selected
the most depleted 1% of NT gRNAs as the threshold for activity after
testing for normality of the NT gRNA distribution (Lilliefors test,
P<0.001). Thisthreshold correspondsto alog,(FC) <-0.50 for screen
1(HEK293FT) aswell aslog,(FC) < -0.44 and log,(FC) < -0.29 for screen
2in HEK293FT and HAP], respectively.

Cell surface marker flow cytometry pooled screens

For certain analyses (for example, entire dataset holdout), we used a
set of published pooled gene-tiling Cas13d screens using flow cytom-
etry of cell surface markers from our previous study’. In these screens,
library-transduced cells were sorted based on the expression of cell sur-
face markers (CD46, CD55 or CD71). Specifically, we used the processed
count data (available in Supplementary Data 8; ref. 7) for the CD46,
CDS55and CD71tiling screens and calculated gRNA FC by computing the
countratios between sorted bins (high versus low) for each replicate
followed by log,-transformation (log,(FC)).

Predicting RNA secondary structures and RNA-RNA
hybridization energies
crRNA secondary structure and MFEs were derived using RNAfold
(--gquad) on the full-length crRNA (DR + guide) sequence®. Target
RNA-pairing probability (accessibility) was calculated using RNAplfold
(-L40-W 80 -u50) as described previously’. These parameters specify
amoving window of 80 nucleotides and a maximal base pairing span
of upto40 nucleotides. We chose these parameters because previous
studies®>***” both in the context of Cas13 and RNA interference have
found optimal performance for alocal window around the target site.
We performed a grid search calculating the RNA accessibility for
each target nucleotide in awindow of minus 20 bases downstream of
the target site to plus 20 bases upstream of the target site assessing
the unpaired probability of each nucleotide over 1-50 bases for all
perfectly matching guides. Then, we calculated the Pearson correla-
tion coefficient between the log,,-transformed unpaired probabilities
and the observed gRNAlog,(FC) for each pointand window relative to
the gRNA. We selected four centers of high correlation to feed into the
model. Target RNA accessibility features are (1) position —11upstream
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tothefirst spacer nucleotide with awidth of 23 nt; (2) position 11 with
awidthof 4 nt; (3) position-19 withawidth of 4 ntand (4) position -25
with awidth of 4 nt.

RNA-RNA hybridization between the gRNA (PM and gRNA
with nucleotide substitutions but not for indel gRNAs) and its tar-
get site was calculated using RNAhybrid (-s -¢)®®. We calculated the
RNA-hybridization MFE for each gRNA nucleotide position p over the
distance dto position p + dwithits cognate target sequence. All meas-
ures were either directly correlated with the observed gRNA log,(FC)
or using partial correlation to account for the crRNA folding MFE. In
each case, we computed the Pearson correlation. We selected three
centers of high correlation to feed into the model. Hybridization MFE
features are (1) position p=1and d=23; (2) positionp=3and d=12;
and (3) positionp=15andd =9.

Assessing target RNA context

To assess the target RNA context, we calculated the nucleotide prob-
ability at each position (p) over awindow (w) of 1-50 nucleotides cen-
tered around the position of interest (for example, p=-18 withw =11
summarizes the nucleotide content in awindow from -23 to 13 with
+1 being the first base of the crRNA). We evaluated p for all positions
within 75 nucleotides upstream and downstream of the gRNA. The
nucleotide context of each point was then correlated with the observed
log,(FC) crRNA enrichments for allPM crRNAs, either directly or using
partial correlation accounting for crRNA folding MFE. In each case,
we used the Pearson correlation. We used the same positions p and
window sizes that have been used before in RF,,”. These RNA nucleo-
tide context features were only used in the RF,, model but not in the
CNN models.

Convolutional neural network for deep learning

The sequence input to the CNN consists of 23 nt target and gRNA
sequences with 2 nt of upstream and downstream target context.
Initially, the input is processed with two consecutive convolution
layers each with 32 4 x 4 kernels followed by a rectified linear unit. At
the next stage, we perform max pooling with a pooling size of two.
We flattened the resulting 32 channels of 16 x 4 learned feature rep-
resentations to a vector of length 2,048 to which we concatenate any
nonsequence features. Toregularize, we use a 25% dropout before our
dense layers, which consist of three layers with 128, 32 and 1 neurons,
respectively. Between each dense layer, we use a10% dropout. The first
two dense (hidden) layers apply sigmoid activations. The single output
neuron does not apply any activation function. This design is similar
to previous deep learning models in computer vision®® and sequence
analysis®.

We use a log hyperbolic cosine (log-cosh) loss function, which is
similar toanL1lossbutis continuously differentiable. We optimize our
models with Adam (adaptive moment estimation), an adaptive stochas-
tic optimization algorithm that requires only first-order gradients®,
with alearning rate of 0.001. We employ early stopping with patience
of 100 epochs and restore model parameters of the best epoch. We
implemented our models using TensorFlow via the Docker image
tensorflow: 2.11.0 with GPU support. In addition, our code imports
the following Python packages: biopython (v1.80), pandas (v1.5.2),
tensorflow-probability (v0.19.0), matplotlib (v3.6.1), seaborn (v0.12.1),
shap (v0.41.0), statsmodels (v0.12.2) and sklearn.

Cross-validation across genes, target sites, gRNAs and
datasets

We consider the following three CV approaches: gene level, target level
andindividual gRNAs. For gene-level CV, we create 16 folds where each
fold contains all (gRNA and target) tuples specific to that gene. This CV
approach promotes transcriptome-wide generalization by holding out
entire genes (and all of the corresponding target sites and gRNAs for
that gene). The second approach (target-level CV) randomly divides

target sites into ten, nonoverlapping folds. Holding out a target site
places all PM and mismatched gRNAs designed for that target site
into the holdout set, ensuring that a target sequence never appears
bothintraining and validation sets. Thisisimportantas active PM and
SMgRNAs for the same target sequence can have similar activity. The
third approach (gRNA-level CV) holds out individual gRNAs; notably,
related gRNAs such asmismatch gRNAs (for a particular PMgRNA in the
holdout group) may still be included in the training set. As expected,
we observe better performance with gRNA-level CV than target- or
gene-level CV.

In some experiments, we train on the 120,000 gRNA library and
then test on a separately collected pooled screen—flow cytometry of
cellsurface proteins fromthree genes (entire dataset holdout)’. For the
entire dataset holdout, we used the log,-transformed gRNA depletion
inthe fluorophore-low bindivided by the fluorophore-high bin. Supple-
mentary Note contains aformal description of all of these CV strategies.
AllCVfoldsused inthe study are presented in Supplementary Data 2.

Comparison with linear regression, random forest and
recurrent neural networks

To quantify the RF,, performance for predicting PM gRNA efficacy on
the essentiality screen, we used the same 16 gene holdouts described
aboveanditeratively retrained the model with its previously described
architecture’ on 15 genes to predict the 16th gene. In addition, we
retrained RF,, on the entire essentiality dataset to evaluate its perfor-
mance onthe phenotypeselection data (flow cytometry). For the recent
Casl3 deep learning models®’, we uploaded each of the 16 transcripts
for our targeted essential genes to their respective web portals to
generate predictions for all potential target sites along the transcript
(1 nt tiling). We only compute performance at target sites for which
we measured gRNA activity. Cheng et al. transformed FC data viaa
parameterized sigmoid function’. We exactly applied this transfor-
mation to our FCs before computing their performance metrics. Wei
etal. generated predictions for 30 nt spacers®. When computing their
performance, we use the first 23 nt of their 30 nt spacer sequence to
match their predictions to our 23 nt gRNA sequences.

We also designed a BiGRU” model as analternative deep learning
approachthatisbased onrecurrent unitsinstead of convolution units.
We designed the BiGRU architecture to closely mimic the dense layers
of TIGER. The BiGRU model uses a convolution kernel of length one to
learn a 32-dimensional embedding from the one-hot-encoded target
and gRNA sequences (16 unique 32-dimensional embeddings for each
possible guide-target pair). Thisembedding feeds a BiGRU layer, which
outputs a32-dimensional representation for each sequence position.
We concatenate the 32-dimensional outputs for both directionsand all
sequence positions and, thereafter, flatten it to a vector of length 64x
sequence length and concatenate nonsequence features. Toregularize,
we apply a 25% dropout on this vector before feeding it to our dense
layers, which consist of three layers with 128,32 and 1 neurons. Between
each dense layer, we use a10% dropout. The first two dense (hidden)
layers apply sigmoid activations. The single output neuron does not
apply any activation function.

For linear regression, we used one-hot-encoded sequences (flat-
tened into a vector) and concatenate nonsequence features to the
same vector.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data generated in this study have been deposited at NCBI Gene
Expression Omnibus (GEO) with the accession number GSE232228.
Flow cytometry screen data fromref. 7 is available under the accession
number GSE142675.
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Code availability

Code to run Casl3d on-target and off-target TIGER models has
been deposited on Github (https://github.com/daklab/tiger). A
web-accessible version of TIGER is available at https://tiger.nygen-
ome.org/.

References

57. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of
tumor growth and metastasis. Cell 160, 1246-1260 (2015).

58. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes
and genotype-specific cancer liabilities. Cell 163, 1515-1526
(2015).

59. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human
RNA-binding proteins. Nat. Rev. Genet. 15, 829-845 (2014).

60. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. &
Luscombe, N. M. A census of human transcription factors:
function, expression and evolution. Nat. Rev. Genet. 10, 252-263
(2009).

61. Love, M. ., Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 15, 550 (2014).

62. Leek, J. T, Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D.
The sva package for removing batch effects and other unwanted
variation in high-throughput experiments. Bioinformatics 28,
882-883 (2012).

63. Sack, L. M., Davoli, T., Xu, Q., Li, M. Z. & Elledge, S. J. Sources of
error in mammalian genetic screens. G3 (Bethesda). 6, 2781-2790
(2016).

64. Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation
for gene list integration and meta-analysis. Bioinformatics 28,
573-580 (2012).

65. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6,
26 (2011).

66. Agarwal, V., Subtelny, A. O., Thiru, P., Ulitsky, |. & Bartel, D. P.
Predicting microRNA targeting efficacy in Drosophila. Genome
Biol. 19,152 (2018).

67. Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting
effective microRNA target sites in mammalian mRNAs. eLife 4,
e05005 (2015).

68. Krueger, J. & Rehmsmeier, M. RNAhybrid: microRNA target
prediction easy, fast and flexible. Nucleic Acids Res. 34, 451-454
(2006).

69. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2014).

70. Cho, K., van Merriénboer, B., Bahdanau, D. & Bengio, Y. On the
properties of neural machine translation: encoder-decoder
approaches. In Proc. SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (eds Wu, D. et al.)
103-111 (Association for Computational Linguistics, 2014).

Acknowledgements

We thank the entire Sanjana and Knowles Labs for their support

and advice. D.A K. is supported by Columbia and NYGC startup

funds, NIH/NCI (R21CA272345) and an NSF CAREER (DBI2146398).
N.E.S. is supported by NYU and NYGC startup funds, NIH/

NHGRI (DP2HG010099), NIH/NCI (RO1CA218668), NIH/NIGMS
(RO1GM138635), DARPA (D18APO0053), Cancer Research Institute and
the Simons Foundation for Autism Research Initiative.

Author contributions

H.W. and N.E.S. conceived the study. HW., A.S., D.A.K. and N.E.S.
designed the experiments. H.W. and A.M. cloned libraries and
performed the CRISPR screens. S.K.H. assisted with cell culture for
pooled screens. HW., A.S., D.A.K. and N.E.S. analyzed the data and
developed the deep learning model. A.S. and E.J.K. implemented the
web-based online TIGER tool. HW., A.S., D.A.K. and N.E.S. wrote the
paper with input from all authors.

Competinginterests

The New York Genome Center and New York University have applied
for patents relating to the work in this article. H.W. is a cofounder

of Neptune Biotech. N.E.S. is an advisor to Qiagen and is a
cofounder of OverT Bio. The other authors declare no

competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41587-023-01830-8.

Correspondence and requests for materials should be addressed to
David A. Knowles or Neville E. Sanjana.

Peer review information Nature Biotechnology thanks the anonymous
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nhature.com/reprints.

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://github.com/daklab/tiger
https://tiger.nygenome.org/
https://tiger.nygenome.org/
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41587-023-01830-8
http://www.nature.com/reprints

natureresearch

Neville Sanjana and David Knowles

Last updated by author(s): May 10, 2023

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection A full data collection description is provided in the method section:
Sequencing reads were trimmed using a custom python (v.2.7.10) script (available upon request).
gRNA read counts were generated using FASTX-Toolkit (v0.0.14).
gRNA and target RNA feature extraction:
RNAfold and RNAplfold ViennaRNA (v2.4.10)
RNAhybrid (v2.1.2)
gRNA prediction from alternative guide RNA prediction algorithm were collected here:
http://deepcas13.weililab.org (No version ID available)
https://www.rnatargeting.org (No version ID available)
https://cas13design.nygenome.org (v1.1, re-trained on data generated in this study where indicated in the text)

Data analysis The method section describes in detail data processing and analysis:
Pooled screen data processing:
Rv3.6.0
RobustRankAggreg v1.1 (R package)
SVA v3.34.0 (R package)
Deep Learning:
We use TensorFlow's official Docker image for version 2.11.0 with GPU support:
https://hub.docker.com/layers/tensorflow/tensorflow/2.11.0-gpu/images/
sha256-67f1a7bl...]1c0cd311655be7477f2bc1b6f27e014b9a57231bd55b3?context=explore
Additional python packages not included in Docker image:
bbiopython (version 1.80)
pandas (version 1.5.2)
matplotlib (version 3.6.1)
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seaborn (version 0.12.1)

shap (version 0.41.0)

statsmodels (version 0.13.5)

tensorflow-probability (version 0.19.0)

statsmodels (version 0.12.2)

sklearn

We have made all code essential to this study available on https://github.com/daklab/tiger as noted in the Code Availability Statement.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data generated in this study has been deposited at NCBI Gene Expression Omnibus (GEO) with the accession number GSE232228. Raw flow cytometry screen
data from Wessels, Méndez-Mancilla et al. (ref. 7) is available under the accession number GSE142675.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A full description of Cas13d guide RNA library size and composition is provided in the method section. All screens have been conducted in at
least three independent replicate experiments. Detailed statistics for included guide numbers and guide classes can be found in
Supplementary Data 2, 5 and 10. The final predictive guide model (TIGERcombined) was constructed using features for 93,145 guides RNAs
(Types: PM, SM, DM, TM, RDM, RTM) (255 filtered gRNAs of the same gRNA types removed) that match to coding sequences of the 16 target
genes presented in Supplementary Data 1 and 2.

Data exclusions  The initial HEK293FT off-target screen was conducted in three replicates. In total, we removed 333 targeting gRNAs due to filtering steps
described in the method section. In addition, non-reproducible technical outliers were masked by flagging individual values with high variance
within replicate samples of each timepoint (DO, D15, D30). Masking did not lead to gRNA removal.

Replication All screens have been conducted in at least three replicate experiments. We confirm that all screen have been conducted independently.
Replicate screens were highly correlated.

Randomization  We consider three cross-validation methods: one at the gene level, one at the target level and one for technical holdouts. For gene holdouts,
we create sixteen folds where each fold contains all (guide, target) tuples specific to that gene. We feel this method is generally the most
challenging method to succeed on as it requires and promotes transcriptome-wide generalization. The second method randomly folds target
sites into ten, non-overlapping folds. Holding out target site places all perfectly matched and mismatched gRNAs for a target site into the
holdout set, ensuring that a target sequence never appears both in training and validation sets. Without this restriction (i.e. randomly folding
at the gRNA level), we found that more sophisticated model architectures, specifically those with recurrent units, that perform extremely well
on gRNA holdouts (Pearson r = 0.88) failed to generalize to held out genes (Pearson r = 0.36). For the technical holdout, we hold out gRNAs
from the flow cytometry of cell surface proteins from three genes. Thus, our technical holdout is a multi-gene holdout. For the technical
holdout, we used the log2-transformed gRNA depletion in the fluorophore-low bin divided by the fluorophore-high bin.

Blinding Not applicable. All experiments have been processed and analyzed in an unbiased way. Analysis did not require blinding.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines
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Cell line source(s) HEK293FT cells (also denoted to as HEK293 cells) were acquired from Thermo Fisher (R70007).
HAP1 cells were acquired from Horizon Discovery.

Authentication The cell lines were not authenticated in the lab after purchase from the vendors.
Mycoplasma contamination All cell lines were tested as mycoplasma-free using Lonza MycoAlert (#L.T07-518).

Commonly misidentified lines  no commonly misidentified cell lines were used.
(See ICLAC register)
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